1
|
Lv M, Zhao Y, Chang S, Gao Z. Identifying signature genes and their associations with immune cell infiltration in spinal cord injury. IBRO Neurosci Rep 2024; 17:320-328. [PMID: 39430218 PMCID: PMC11490871 DOI: 10.1016/j.ibneur.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background Early detection of spinal cord injury (SCI) is conducive to improving patient outcomes. In addition, many studies have revealed the role of immune cells in the progression or treatment of SCI. The objective of this study was to identify the early signature genes and clarify how they are related to immune cell infiltration in SCI. Methods We analysed and identified early signature genes associated with SCI via bioinformatics analysis of the GSE151371 dataset from the GEO database. These genes were subsequently verified in the GSE33886 dataset and qRT-PCR. Finally, the CIBERSORT algorithm was used to examine the immune cell infiltration in SCI and its relationship with signature genes. Results Seven SCI-related signature genes, including ARG1, RETN, BPI, GGH, CCNB1, HIST1H2AC, and HIST1H2BJ, were identified, and their expression was verified via an external validation cohort and qRT-PCR. Moreover, the ROC curves revealed the diagnostic value of these genes. In addition, on the basis of immune cell infiltration analysis, plasma cells, M0 macrophages, activated CD4+ memory T cells, γδ T cells, naive CD4+ T cells, and resting CD4+ memory T cells may participate in the progression of SCI. Conclusion This study identified seven early signature genes of SCI that may serve as biomarkers for the early diagnosis of SCI and contribute to our understanding of immune changes during the pathology of SCI.
Collapse
Affiliation(s)
- Meng Lv
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Yingjie Zhao
- Department of Orthopaedics, Shaanxi Provincial People's Hospital (Third Affiliated Hospital of Xi’an Jiaotong University), Xi’an, Shaanxi Province 710068, China
| | - Su’e Chang
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| | - Zhengchao Gao
- Department of Orthoapedic Surgery, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710004, China
| |
Collapse
|
2
|
Gu W, Mirsaidi-Madjdabadi S, Ramirez F, Simonson TS, Makino A. Transcriptome meta-analysis of Kawasaki disease in humans and mice. Front Pediatr 2024; 12:1423958. [PMID: 39350793 PMCID: PMC11440715 DOI: 10.3389/fped.2024.1423958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Kawasaki Disease (KD) affects young children less than five years old with severe blood vessel inflammation. Despite being treatable, the causes and mechanisms remain elusive. This study conducted a meta-analysis of RNA sequencing (RNA-seq) data from human and animal models to explore KD's transcriptomic profile and evaluate animal models. We retrieved bulk and single-cell RNA-seq data from Gene Expression Omnibus, with blood and coronary artery samples from KD patients, aorta samples from KD mouse models (Lactobacillus casei cell wall extract-injected mice), and their controls. Upon consistent quality control, we applied Fisher's exact test to assess differential gene expression, followed by an enrichment analysis of overlapping genes. These studies identified 400 differentially expressed genes in blood samples of KD patients compared to controls and 413 genes in coronary artery samples. The data from KD blood and KD coronary artery samples shared only 16 differentially expressed genes. Eighty-one genes overlapped between KD human coronary arteries and KD mouse aortas, and 67 of these 81 genes were regulated in parallel in both humans and mice: 30 genes were up-regulated, and 37 were down-regulated. These included previously identified KD-upregulated genes: CD74, SFRP4, ITGA4, and IKZF1. Gene enrichment analysis revealed significant alterations in the cardiomyopathy pathway. Single-cell RNAseq showed a few significant markers, with known KD markers like S100A9, S100A8, CD74, CD14, IFITM2, and IFITM3, being overexpressed in KD cohorts. Gene profiles obtained from KD human coronary artery are more compatible with data from aorta samples of KD mice than blood samples of KD humans, validating KD animal models for identifying therapeutic targets. Although blood samples can be utilized to discover novel biomarkers, more comprehensive single-cell sequencing is required to detail gene expression in different blood cell populations. This study identifies critical genes from human and mouse tissues to help develop new treatment strategies for KD.
Collapse
Affiliation(s)
- Wanjun Gu
- Department of Medicine, University of California, San Diego, CA, United States
| | | | - Francisco Ramirez
- Department of Medicine, University of California, San Diego, CA, United States
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Tatum S. Simonson
- Department of Medicine, University of California, San Diego, CA, United States
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, CA, United States
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim University of Florida Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
3
|
Cao M, Zhang Z, Liu Q, Zhang Y. Identification of hub genes and pathogenesis in Kawasaki disease based on bioinformatics analysis. INDIAN J PATHOL MICR 2024; 67:297-305. [PMID: 38427757 DOI: 10.4103/ijpm.ijpm_524_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The aim of this study was to explore new biomarkers of Kawasaki disease (KD) and provide evidence for clinical diagnosis and treatment. MATERIALS AND METHODS Gene Expression Omnibus (GEO) datasets GSE68004 and GSE73461 were downloaded, and the differentially expressed genes (DGEs) were taken, along with DEGs enrichment analysis and protein interaction network. Finally, five algorithms in CytoHubba plug-in were applied to obtain hub genes. RESULTS In this study, 32 Co-DEGs were identified, and these genes mainly participated in neutrophil degranulation, neutrophil activation involved in immune response, and negative regulation of cytokine production involved in immune response; meanwhile, they were primarily enriched in starch and sucrose metabolism, fatty acid metabolism, autophagy and apoptosis, ferroptosis, and other pathways. Combined with the results of PPI and CytoHubba, 13 key genes were selected as follows: S100A12, HK3, HP, MMP9, MCEMP1, PYGL, ARG1, HIST2H2AA, ANXA3, HIST2H2AC, HIST2H2AA3, GYG1, DYSF. CONCLUSIONS These 13 key genes may mediate the occurrence and development of KD through various processes such as immune regulation, inflammatory response, glucose metabolism, autophagy, and apoptosis, which provide valuable references for the diagnosis and treatment of KD.
Collapse
Affiliation(s)
- Min Cao
- Department of Clinical Laboratory, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zhenhu Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Liu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuda Zhang
- Department of Clinical Laboratory, Shanghai Songjiang District Central Hospital, Shanghai, China
| |
Collapse
|
4
|
Bayry J, Ahmed EA, Toscano-Rivero D, Vonniessen N, Genest G, Cohen CG, Dembele M, Kaveri SV, Mazer BD. Intravenous Immunoglobulin: Mechanism of Action in Autoimmune and Inflammatory Conditions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1688-1697. [PMID: 37062358 DOI: 10.1016/j.jaip.2023.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/18/2023]
Abstract
Intravenous immunoglobulin (IVIG) is the mainstay of therapy for humoral immune deficiencies and numerous inflammatory disorders. Although the use of IVIG may be supplanted by several targeted therapies to cytokines, the ability of polyclonal normal IgG to act as an effector molecule as well as a regulatory molecule is a clear example of the polyfunctionality of IVIG. This article will address the mechanism of action of IVIG in a number of important conditions that are otherwise resistant to treatment. In this commentary, we will highlight mechanistic studies that shed light on the action of IVIG. This will be approached by identifying effects that are both common and disease-specific, targeting actions that have been demonstrated on cells and processes that represent both innate and adaptive immune responses.
Collapse
Affiliation(s)
- Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India.
| | - Eisha A Ahmed
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Diana Toscano-Rivero
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Nicholas Vonniessen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Genevieve Genest
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Casey G Cohen
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Marieme Dembele
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
| | - Bruce D Mazer
- Research Institute of McGill University Health Centre, Translational Program in Respiratory Diseases and Department of Pediatrics, McGill University Faculty of Medicine, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Mansueto G, Lanza G, Falleti J, Orabona P, Alaouieh D, Hong E, Girolami S, Montella M, Fisicaro F, Galdieri A, Singh P, Di Napoli M. Central and Peripheral Nervous System Complications of Vasculitis Syndromes from Pathology to Bedside: Part 2-Peripheral Nervous System. Curr Neurol Neurosci Rep 2023; 23:83-107. [PMID: 36820992 PMCID: PMC9947450 DOI: 10.1007/s11910-023-01249-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Peripheral nervous system vasculitides (PNSV) are a heterogeneous group of disorders with a clinical subset that may differ in prognosis and therapy. We provide a comprehensive update on the clinical assessment, diagnosis, complications, treatment, and follow-up of PNSV. RECENT FINDINGS Progress in neuroimaging, molecular testing, and peripheral nerve biopsy has improved clinical assessment and decision-making of PNSV, also providing novel insights on how to prevent misdiagnosis and increase diagnostic certainty. Advances in imaging techniques, allowing to clearly display the vessel walls, have also enhanced the possibility to differentiate inflammatory from non-inflammatory vascular lesions, while recent histopathology data have identified the main morphological criteria for more accurate diagnosis and differential diagnoses. Overall, the identification of peculiar morphological findings tends to improve diagnostic accuracy by defining a clearer boundary between systemic and non-systemic neuropathies. Therefore, the definition of epineurium vessel wall damage, type of vascular lesion, characterization of lymphocyte populations, antibodies, and inflammatory factors, as well as the identification of direct nerve damage or degeneration, are the common goals for pathologists and clinicians, who will both benefit for data integration and findings translation. Nevertheless, to date, treatment is still largely empiric and, in some cases, unsatisfactory, thus often precluding precise prognostic prediction. In this context, new diagnostic techniques and multidisciplinary management will be essential in the proper diagnosis and prompt management of PNSV, as highlighted in the present review. Thirty to fifty percent of all patients with vasculitis have signs of polyneuropathy. Neuropathies associated with systemic vasculitis are best managed according to the guidelines of the underlying disease because appropriate workup and initiation of treatment can reduce morbidity. Steroids, or in severe or progressive cases, cyclophosphamide pulse therapy is the standard therapy in non-systemic vasculitic neuropathies. Some patients need long-term immunosuppression. The use of novel technologies for high-throughput genotyping will permit to determine the genetic influence of related phenotypes in patients with PNSV.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy.,Clinical Department of Laboratory Services and Public Health-Legal Medicine Unit, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy.,Pathology-Unit of Federico II University, Via S. Pansini 3, 80131, Naples, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.,Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Via Conte Ruggero 73, 94018, Troina, Italy
| | - Jessica Falleti
- Pathology Unit, Sant'Anna E San Sebastiano Hospital, 81100, Caserta, Italy
| | - Pasquale Orabona
- Pathology Unit, Sant'Anna E San Sebastiano Hospital, 81100, Caserta, Italy
| | | | - Emily Hong
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Sara Girolami
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100, 67039, Sulmona, L'Aquila, Italy
| | - Marco Montella
- Mental and Physical Health and Preventive Medicine Department, University of Campania "Luigi Vanvitelli", Via Luciano Armanni 5, 80138, Naples, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123, Catania, Italy
| | - Anna Galdieri
- AOU "Luigi Vanvitelli", Via Santa Maria Di Costantinopoli 104, 80138, Naples, Italy
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala, 147002, Punjab, India
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100, 67039, Sulmona, L'Aquila, Italy.
| |
Collapse
|
6
|
Identifying differentially expressed genes and miRNAs in Kawasaki disease by bioinformatics analysis. Sci Rep 2022; 12:21879. [PMID: 36536067 PMCID: PMC9763244 DOI: 10.1038/s41598-022-26608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Kawasaki disease (KD) is an acute systemic immune vasculitis caused by infection, and its etiology and underlying mechanisms are not completely clear. This study aimed to identify differentially expressed genes (DEGs) with diagnostic and treatment potential for KD using bioinformatics analysis. In this study, three KD datasets (GSE68004, GSE73461, GSE18606) were downloaded from the Gene Expression Omnibus (GEO) database. Identification of DEGs between normal and KD whole blood was performed using the GEO2R online tool. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analysis of DEGs was undertaken with Metascape. Analysis and visualization of protein-protein interaction networks (PPI) were carried out with STRING and Cytoscape. Lastly, miRNA-genes regulatory networks were built by Cytoscape to predict the underlying microRNAs (miRNAs) associated with DEGs. Overall, 269 DEGs were identified, including 230 up-regulated and 39 down-regulated genes. The enrichment functions and pathways of DEGs involve regulation of defense response, inflammatory response, response to bacterium, and T cell differentiation. KEGG analysis indicates that the genes were significantly enriched in Neutrophil extracellular trap formation, TNF signaling pathway, Cytokine-cytokine receptor interaction, and Primary immunodeficiency. After combining the results of the protein-protein interaction (PPI) network and CytoHubba, 9 hub genes were selected, including TLR8, ITGAX, HCK, LILRB2, IL1B, FCGR2A, S100A12, SPI1, and CD8A. Based on the DEGs-miRNAs network construction, 3 miRNAs including mir-126-3p, mir-375 and mir-146a-5p were determined to be potential key miRNAs. To summarize, a total of 269 DEGs, 9 hub genes and 3 miRNAs were identified, which could be considered as KD biomarkers. However, further studies are needed to clarify the biological roles of these genes in KD.
Collapse
|
7
|
Srivastava P, Bamba C, Pilania RK, Kumari A, Kumrah R, Sil A, Singh S. Exploration of Potential Biomarker Genes and Pathways in Kawasaki Disease: An Integrated in-Silico Approach. Front Genet 2022; 13:849834. [PMID: 35615376 PMCID: PMC9124956 DOI: 10.3389/fgene.2022.849834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Kawasaki disease (KD) is a common childhood systemic vasculitis with a special predilection for coronary arteries. Even after more than five decades of the initial description of the disease, the etiology of KD remains an enigma. This transcriptome data re-analysis study aimed to elucidate the underlying pathogenesis of KD using a bioinformatic approach to identify differentially expressed genes (DEGs) to delineate common pathways involved in KD. Array datasets from the Gene Expression Omnibus database were extracted and subjected to comparative meta-analysis for the identification of prominent DEGs. Fifteen hub genes with high connectivity were selected from these DEGs (IL1B, ITGAM, TLR2, CXCL8, SPI1, S100A12, MMP9, PRF1, TLR8, TREM1, CD44, UBB, FCER1G, IL7R, and FCGR1A). Of these 15 genes, five genes (CXCL8, FCGR1A, IL1B, TLR2, and TLR8) were found to be involved in neutrophil degranulation. To gain further insight into the molecular mechanism, a protein–protein network was established. Significantly enriched pathways based on the above-mentioned genes were mainly centered on biological regulation and signaling events. In addition, the pathway analysis also indicated that the majority of the DEGs in KD were enriched in systemic lupus erythematosus, suggesting a strong interplay between immunological and genetic factors in the pathogenesis of KD. These findings could significantly aid in identifying therapeutic targets and understanding KD biosignatures to design a biomarker panel for early diagnosis and severity of the disease.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
- *Correspondence: Priyanka Srivastava,
| | - Chitra Bamba
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Rakesh Kumar Pilania
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Anu Kumari
- Genetic Metabolic Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Archan Sil
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatric Centre, Post Graduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|