1
|
Eddin LB, Meeran MFN, Subramanya SB, Jha NK, Ojha S. Therapeutic potential of agents targeting cannabinoid type 2 receptors in organ fibrosis. Pharmacol Res Perspect 2024; 12:e1219. [PMID: 39425446 PMCID: PMC11489134 DOI: 10.1002/prp2.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 10/21/2024] Open
Abstract
The endocannabinoid system has garnered attention as a potential therapeutic target in a range of pathological disorders. Cannabinoid receptors type 2 (CB2) are a class of G protein-coupled receptors responsible for transmitting intracellular signals triggered by both endogenous and exogenous cannabinoids, including those derived from plants (phytocannabinoids) or manufactured synthetically (synthetic cannabinoids). Recent recognition of the role of CB2 receptors in fibrosis has fueled interest in therapeutic targeting of CB2 receptors in fibrosis. Fibrosis is characterized by the alteration of the typical cellular composition within the tissue parenchyma, resulting from exposure to diverse etiological factors. The pivotal function of CB2 agonists has been widely recognized in the regulation of inflammation, fibrogenesis, and various other biological pathologies. The modulation of CB2 receptors, whether by enhancing their expression or activating their function, has the potential to provide benefits in numerous conditions, particularly by avoiding any associated adverse effects on the central nervous system. The sufficient activation of CB2 receptors resulted in the complete suppression of gene expression related to transforming growth factor β1 and its subsequent fibrogenic response. Multiple reports have also indicated the diverse functions that CB2 agonists possess in mitigating chronic inflammation and subsequent fibrosis development in various types of tissues. While currently in the preclinical stage, the advancement of CB2 compounds has garnered significant attention within the realm of drug discovery. This review presents a comprehensive synthesis of various independent experimental studies elucidating the pivotal role of identified natural and synthetic CB2 agonists in the pathophysiology of organ fibrosis, specifically in the cardiac, hepatic, and renal systems.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical CollegeSaveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Department of Biotechnology, School of Applied & Life Sciences (SALS)Uttaranchal UniversityDehradunIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUAE
| |
Collapse
|
2
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
3
|
Shen S, Fu B, Deng L, Zhu G, Shi H, Tian G, Han C, Yi P, Peng L. Paeoniflorin protects chicken against APEC-induced acute lung injury by affecting the endocannabinoid system and inhibiting the PI3K/AKT and NF-κB signaling pathways. Poult Sci 2024; 103:103866. [PMID: 38833957 PMCID: PMC11179074 DOI: 10.1016/j.psj.2024.103866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of chicken colibacillosis. Paeoniflorin, a natural ingredient extracted from Paeonia lactiflora, has a variety of pharmacological effects including anti-inflammatory and immunomodulatory. However, its effects and mechanism in APEC-induced acute lung injury (ALI) in chicken is not clear. The aim of this study was to investigate the protective effect of paeoniflorin on APEC-induced ALI and its possible mechanism. Paeoniflorin (25, 50, and 100 mg/kg) was administered by gavage for 5 d starting at 9 d of age and the chicken were infected with APEC by intraperitoneal injection at 12 d of age. The tissues were collected after APEC infection for 36 h for analysis. The results showed that paeoniflorin significantly alleviated the symptoms, increased the survival rate and body weight gain of APEC-infected chicken, and improved the histopathological damages, and reduced APEC loads in lung tissues. In addition, paeoniflorin restored the gene expression of ZO-1, Occludin and Claudin-3 during APEC infection. Moreover, paeoniflorin pretreatment significantly affected the endocannabinoid system (ECs) by increasing DAGL, decreasing MAGL, increasing secretion of 2-AG. Then, paeoniflorin significantly decreased the secretion of IL-1β, IL-6 and TNF-α in lung tissues, and decreased the mRNA expression of CXCL8, CXCL12, CCL1, CCL5, and CCL17. In addition, paeoniflorin significantly reduced the phosphorylation levels of PI3K, AKT, P65, and IκB. In summary, we found that paeoniflorin inhibited APEC-induced ALI, and its mechanism may be through affecting ECs and inhibiting the activation of PI3K/AKT and NF-κB signaling pathways, which provides a new idea for the prevention and treatment of chicken colibacillosis.
Collapse
Affiliation(s)
- Siyang Shen
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Bendong Fu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Ling Deng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guoqiang Zhu
- Animal Husbandry and Veterinary Station, Diao town Zhangqiu district, Jinan, Shandong 250204, China
| | - Haitao Shi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Guang Tian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Chi Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Pengfei Yi
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China
| | - Luyuan Peng
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China; State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, Changchun, Jilin 130062, China.
| |
Collapse
|
4
|
Wang X, Tian H, Chen J, Huang D, Ding F, Ma T, Xi J, Wu C, Zhang Y. Isobavachalcone attenuates liver fibrosis via activation of the Nrf2/HO-1 pathway in rats. Int Immunopharmacol 2024; 128:111398. [PMID: 38171054 DOI: 10.1016/j.intimp.2023.111398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Liver fibrosis, a progression of chronic liver disease, is a significant concern worldwide due to the lack of effective treatment modalities. Recent studies have shown that natural products play a crucial role in preventing and treating liver fibrosis. Isobavachalcone (IBC) is a chalcone compound with anti-inflammatory, antioxidant, and anti-cancer properties. However, its potential antifibrotic effects remain to be elucidated. This study aimed to investigate the antifibrotic effects of IBC on liver fibrosis and its underlying mechanisms in rats. The results showed that IBC significantly ameliorated the pathological damage and collagen deposition in liver tissues; it also reduced the levels of hydroxyproline (HYP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). In addition, IBC activated Nuclear factor E2-associated factor 2/Hemeoxygenase-1 (Nrf2/HO-1) signaling, leading to the nuclear translocation of Nrf2. This translocation subsequently increased the levels of superoxide dismutase (SOD) and glutathione (GSH) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), thereby alleviating oxidative stress-induced damage. Moreover, it inhibited the expression of nuclear factor kappa B (NF-κB), which further reduced the levels of downstream inflammatory factors, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta (IL-1β), thereby suppressing the activation of HSCs and weakening liver fibrosis. In HSC-T6 cell experiments, changes observed in inflammatory responses, oxidative stress indicators, and protein expression were consistent with the in vivo results. Furthermore, the Nrf2 inhibitor (ML385) attenuated the effect of IBC on inhibiting the activation of quiescent HSCs. Consequently, IBC could alleviate liver fibrosis by activating Nrf2/ HO-1 signaling.
Collapse
Affiliation(s)
- Xiangshu Wang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Haozhe Tian
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jie Chen
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Di Huang
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Feng Ding
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tao Ma
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jin Xi
- Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Chengzhu Wu
- School of Pharmacy, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu, Anhui Province, China.
| | - Yuxin Zhang
- School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui Province, China; Anhui Key Laboratory of Tissue Transplantation at Bengbu Medical College, Bengbu, Anhui Province, China.
| |
Collapse
|
5
|
Kaffe E, Tisi A, Magkrioti C, Aidinis V, Mehal WZ, Flavell RA, Maccarrone M. Bioactive signalling lipids as drivers of chronic liver diseases. J Hepatol 2024; 80:140-154. [PMID: 37741346 DOI: 10.1016/j.jhep.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/25/2023]
Abstract
Lipids are important in multiple cellular functions, with most having structural or energy storage roles. However, a small fraction of lipids exert bioactive roles through binding to G protein-coupled receptors and induce a plethora of processes including cell proliferation, differentiation, growth, migration, apoptosis, senescence and survival. Bioactive signalling lipids are potent modulators of metabolism and energy homeostasis, inflammation, tissue repair and malignant transformation. All these events are involved in the initiation and progression of chronic liver diseases. In this review, we focus specifically on the roles of bioactive lipids derived from phospholipids (lyso-phospholipids) and poly-unsaturated fatty acids (eicosanoids, pro-resolving lipid mediators and endocannabinoids) in prevalent chronic liver diseases (alcohol-associated liver disease, non-alcoholic fatty liver disease, viral hepatitis and hepatocellular carcinoma). We discuss the balance between pathogenic and beneficial bioactive lipids as well as potential therapeutic targets related to the agonism or antagonism of their receptors.
Collapse
Affiliation(s)
- Eleanna Kaffe
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA.
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | | | - Vassilis Aidinis
- Biomedical Sciences Research Center Alexander Fleming, 16672, Athens, Greece
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT, 06520, USA; Veterans Affairs Medical Center, West Haven, CT, 06516, USA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, 06511, New Haven, CT, USA; Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy; Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy.
| |
Collapse
|
6
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
7
|
Benedicto A, Arteta B, Duranti A, Alonso-Alconada D. The Synthetic Cannabinoid URB447 Exerts Antitumor and Antimetastatic Effect in Melanoma and Colon Cancer. Pharmaceuticals (Basel) 2022; 15:ph15101166. [PMID: 36297277 PMCID: PMC9606960 DOI: 10.3390/ph15101166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
The endocannabinoid system is widespread through the body and carries out a wide variety of functions. However, its involvement in other pathologies, such as cancer, still needs further attention. We aim to investigate the role of CB2 receptor during melanoma and colorectal cancer (CRC) aggressiveness and metastatic growth in the liver. We used the synthetic cannabinoid URB447, a known CB2 agonist and CB1 antagonist drug, and studied prometastatic ability of mouse B16 melanoma and MCA38 CRC cells, by means of proliferation, apoptosis, cell cycle, migration and matrix degradation in vitro upon URB447 treatment. We reported a dose-dependent viability decrease in both tumor types. This result is partly mediated by apoptotic cell death and cell cycle arrest in G1/G0 phase, as observed through flow cytometry. Melanoma and CRC cell migration was affected in a dose-dependent fashion as observed through scratch assay, whereas the secretion of matrix degrading proteins metalloprotease 2 (MMP2) and 9 (MMP9) in tumor cells did not significantly change. Moreover, daily treatment of tumor bearing mice with URB447 decreased the development of liver metastasis in a melanoma model in vivo. This proof of concept study points out to the synthetic cannabinoid URB447 as a potential candidate for deeper studies to confirm its potential as antitumor therapy and liver metastasis treatment for CRC and melanoma.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, Faculty of Medicine and Nursery, University of the Basque Country, 48940 Leioa, Bizkaia, Spain
- Correspondence: ; Tel.: +34-946013294
| |
Collapse
|