1
|
Ma M, Cheng Y, Hou X, Li Z, Wang M, Ma B, Cheng Q, Ding Z, Feng H. Serum biomarkers in patients with drug-resistant epilepsy: a proteomics-based analysis. Front Neurol 2024; 15:1383023. [PMID: 38585359 PMCID: PMC10995353 DOI: 10.3389/fneur.2024.1383023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To investigate the serum biomarkers in patients with drug-resistant epilepsy (DRE). Methods A total of 9 DRE patients and 9 controls were enrolled. Serum from DRE patients was prospectively collected and analyzed for potential serum biomarkers using TMT18-labeled proteomics. After fine quality control, bioinformatics analysis was conducted to find differentially expressed proteins. Pathway enrichment analysis identified some biological features shared by differential proteins. Protein-protein interaction (PPI) network analysis was further performed to discover the core proteins. Results A total of 117 serum differential proteins were found in our study, of which 44 were revised upwards and 73 downwards. The up-regulated proteins mainly include UGGT2, PDIA4, SEMG1, KIAA1191, CCT7 etc. and the down-regulated proteins mainly include ROR1, NIF3L1, ITIH4, CFP, COL11A2 etc. Pathway enrichment analysis identified that the upregulated proteins were mainly enriched in processes such as immune response, extracellular exosome, serine-type endopeptidase activity and complement and coagulation cascades, and the down-regulated proteins were enriched in signal transduction, extracellular exosome, zinc/calcium ion binding and metabolic pathways. PPI network analysis revealed that the core proteins nodes include PRDX6, CAT, PRDX2, SOD1, PARK7, GSR, TXN, ANXA1, HINT1, and S100A8 etc. Conclusion The discovery of these differential proteins enriched our understanding of serum biomarkers in patients with DRE and potentially provides guidance for future targeted therapy.
Collapse
Affiliation(s)
- Mian Ma
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Ying Cheng
- Suzhou Jinchang Street Bailian Community Health Service Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Xiaoxia Hou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhisen Li
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Meixia Wang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Bodun Ma
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Qingzhang Cheng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Zhiliang Ding
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Hongxuan Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang Y, Liu Y, Jia Y, Zhao Y, Ma C, Bao X, Meng X, Dou W, Wang X, Ge W. Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy. Epilepsy Res 2020; 166:106412. [DOI: 10.1016/j.eplepsyres.2020.106412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 12/31/2022]
|
3
|
Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, Talkowski M, Thiele E, Sheridan SD, Haggarty SJ, Ramesh V. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism 2020; 11:2. [PMID: 31921404 PMCID: PMC6945400 DOI: 10.1186/s13229-019-0311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Pauline Martin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Vilas Wagh
- 2MERCK Research Laboratories, Boston, MA 02115 USA
| | - Surya A Reis
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Serkan Erdin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roberta L Beauchamp
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ghalib Shaikh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Michael Talkowski
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Elizabeth Thiele
- 3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Steven D Sheridan
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,4Center for Quantitative Health, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Stephen J Haggarty
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Vijaya Ramesh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
4
|
Zub E, Canet G, Garbelli R, Blaquiere M, Rossini L, Pastori C, Sheikh M, Reutelingsperger C, Klement W, de Bock F, Audinat E, Givalois L, Solito E, Marchi N. The GR-ANXA1 pathway is a pathological player and a candidate target in epilepsy. FASEB J 2019; 33:13998-14009. [PMID: 31618599 DOI: 10.1096/fj.201901596r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immune changes occur in experimental and clinical epilepsy. Here, we tested the hypothesis that during epileptogenesis and spontaneous recurrent seizures (SRS) an impairment of the endogenous anti-inflammatory pathway glucocorticoid receptor (GR)-annexin A1 (ANXA1) occurs. By administrating exogenous ANXA1, we studied whether pharmacological potentiation of the anti-inflammatory response modifies seizure activity and pathophysiology. We used an in vivo model of temporal lobe epilepsy based on intrahippocampal kainic acid (KA) injection. Video-electroencephalography, molecular biology analyses on brain and peripheral blood samples, and pharmacological investigations were performed in this model. Human epileptic cortices presenting type II focal cortical dysplasia (IIa and b), hippocampi with or without hippocampal sclerosis (HS), and available controls were used to study ANXA1 expression. A decrease of phosphorylated (phospho-) GR and phospho-GR/tot-GR protein expression occurred in the hippocampus during epileptogenesis. Downstream to GR, the anti-inflammatory protein ANXA1 remained at baseline levels while inflammation installed and endured. In peripheral blood, ANXA1 and corticosterone levels showed no significant modifications during disease progression except for an early and transient increase poststatus epilepticus. These results indicate inadequate ANXA1 engagement over time and in these experimental conditions. By analyzing human brain specimens, we found that where significant inflammation exists, the pattern of ANXA1 immunoreactivity was abnormal because the typical perivascular ANXA1 immunoreactivity was reduced. We next asked whether potentiation of the endogenous anti-inflammatory mechanism by ANXA1 administration modifies the disease pathophysiology. Although with varying efficacy, administration of exogenous ANXA1 somewhat reduced the time spent in seizure activity as compared to saline. These results indicate that the anti-inflammatory GR-ANXA1 pathway is defective during experimental seizure progression. The prospect of pharmacologically restoring or potentiating this endogenous anti-inflammatory mechanism as an add-on therapeutic strategy for specific forms of epilepsy is proposed.-Zub, E., Canet, G., Garbelli, R., Blaquiere, M., Rossini, L., Pastori, C., Sheikh, M., Reutelingsperger, C., Klement, W., de Bock, F., Audinat, E., Givalois, L., Solito, E., Marchi, N. The GR-ANXA1 pathway is a pathological player and a candidate target in epilepsy.
Collapse
Affiliation(s)
- Emma Zub
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Geoffrey Canet
- Molecular Mechanisms in Neurodegenerative Diseases, INSERM Unité 1198, University of Montpellier, Montpellier, France
| | - Rita Garbelli
- Epilepsy Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marine Blaquiere
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Laura Rossini
- Epilepsy Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pastori
- Epilepsy Unit, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Istituto Neurologico Carlo Besta, Milan, Italy
| | - Madeeha Sheikh
- William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Chris Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Wendy Klement
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Frederic de Bock
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Etienne Audinat
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| | - Laurent Givalois
- Molecular Mechanisms in Neurodegenerative Diseases, INSERM Unité 1198, University of Montpellier, Montpellier, France
| | - Egle Solito
- William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Nicola Marchi
- Laboratory of Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, Unité Mixtes de Recherche (UMR) 5203 Centre National de la Recherche Scientifique (CNRS) - Unité 1191 INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
5
|
Gimenes AD, Andrade BFD, Pinotti JVP, Oliani SM, Galvis-Alonso OY, Gil CD. Annexin A1-derived peptide Ac 2-26 in a pilocarpine-induced status epilepticus model: anti-inflammatory and neuroprotective effects. J Neuroinflammation 2019; 16:32. [PMID: 30755225 PMCID: PMC6371492 DOI: 10.1186/s12974-019-1414-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background The inflammatory process has been described as a crucial mechanism in the pathophysiology of temporal lobe epilepsy. The anti-inflammatory protein annexin A1 (ANXA1) represents an interesting target in the regulation of neuroinflammation through the inhibition of leukocyte transmigration and the release of proinflammatory mediators. In this study, the role of the ANXA1-derived peptide Ac2-26 in an experimental model of status epilepticus (SE) was evaluated. Methods Male Wistar rats were divided into Naive, Sham, SE and SE+Ac2-26 groups, and SE was induced by intrahippocampal injection of pilocarpine. In Sham animals, saline was applied into the hippocampus, and Naive rats were only handled. Three doses of Ac2-26 (1 mg/kg) were administered intraperitoneally (i.p.) after 2, 8 and 14 h of SE induction. Finally, 24 h after the experiment-onset, rats were euthanized for analyses of neuronal lesion and inflammation. Results Pilocarpine induced generalised SE in all animals, causing neuronal damage, and systemic treatment with Ac2-26 decreased neuronal degeneration and albumin levels in the hippocampus. Also, both SE groups showed an intense influx of microglia, which was corroborated by high levels of ionised calcium binding adaptor molecule 1(Iba-1) and monocyte chemoattractant protein-1 (MCP-1) in the hippocampus. Ac2-26 reduced the astrocyte marker (glial fibrillary acidic protein; GFAP) levels, as well as interleukin-1β (IL-1β), interleukin-6 (IL-6) and growth-regulated alpha protein (GRO/KC). These effects of the peptide were associated with the modulation of the levels of formyl peptide receptor 2, a G-protein-coupled receptor that binds to Ac2-26, and the phosphorylated extracellular signal-regulated kinase (ERK) in the hippocampal neurons. Conclusions The data suggest a neuroprotective effect of Ac2-26 in the epileptogenic processes through downregulation of inflammatory mediators and neuronal loss.
Collapse
Affiliation(s)
- Alexandre D Gimenes
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Bruna F D Andrade
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - José Victor P Pinotti
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil
| | - Sonia M Oliani
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil.,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil
| | - Orfa Y Galvis-Alonso
- Department of Molecular Biology, São José do Rio Preto School of Medicine (FAMERP), São José do Rio Preto, SP, 15090-000, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-900, Brazil. .,From the Post-Graduation in Biosciences, Instituto de Biociências, Letras e Ciências Exatas, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|
6
|
Wei H, Duan G, He J, Meng Q, Liu Y, Chen W, Meng Y. Geniposide attenuates epilepsy symptoms in a mouse model through the PI3K/Akt/GSK-3β signaling pathway. Exp Ther Med 2017; 15:1136-1142. [PMID: 29399113 DOI: 10.3892/etm.2017.5512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 10/18/2017] [Indexed: 11/06/2022] Open
Abstract
Previous reports on the pharmacological actions of geniposide have indicated that it has anti-asthmatic, anti-inflammatory and analgesic effects in the liver and gallbladder, and therapeutic effects in neurological, cardiovascular and cerebrovascular diseases. The results of the current study demonstrate that geniposide attenuates epilepsy in a mouse model through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) signaling pathway. A mouse model of epilepsy was induced by maximal electric shock (50 mA, 50 Hz, 1 sec). Epilepsy mice were intragastrically administered with 0, 5, 10 or 20 mg/kg geniposide. Geniposide significantly reduced the incidence and significantly increased the latency of clonic seizures in epileptic mice compared with non-treated epileptic mice (both P<0.01). Geniposide treatment significantly inhibited cyclooxygenase-2 mRNA expression in epilepsy mice (P<0.01). Furthermore, geniposide significantly suppressed the protein expression of activator protein 1, increased the activation of Akt and increased the protein expression of GSK-3β and PI3K in epilepsy mice (all P<0.01). These results suggest that geniposide attenuates epilepsy in mice through the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Hongtao Wei
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Guanghui Duan
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Jianxun He
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Qinglong Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yuxian Liu
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Wanqiang Chen
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Yongpeng Meng
- Department of Neurosurgery, The Second People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|