Sklinda K, Karpowicz J, Stępniewski A. Electromagnetic Exposure of Personnel Involved in Cardiac MRI Examinations in 1.5T, 3T and 7T Scanners.
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021;
19:ijerph19010076. [PMID:
35010336 PMCID:
PMC8751149 DOI:
10.3390/ijerph19010076]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
(1) Background: It has been hypothesised that a significant increase in the use of cardiac magnetic resonance (CMR), for example, when examining COVID-19 convalescents using magnetic resonance imaging (MRI), has an influence the exposure profiles of medical personnel to static magnetic fields (STmf). (2) Methods: Static exposure to STmf (SEmf) was recorded during activities that modelled performing CMR by radiographers. The motion-induced time variability of that exposure (TVEmf) was calculated from SEmf samples. The results were compared with: (i) labour law requirements; (ii) the distribution of vertigo perception probability near MRI magnets; and (iii) the exposure profile when actually performing a head MRI. (3) Results: The exposure profiles of personnel managing 42 CMR scans (modelled using medium (1.5T), high (3T) and ultrahigh (7T) field scanners) were significantly different than when managing a head MRI. The majority of SEmf and TVEmf samples (up to the 95th percentile) were at low vertigo perception probability (SEmf < 500 mT, TVEmf < 600 mT/s), but a small fraction were at medium/high levels; (4) Conclusion: Even under the “normal working conditions” defined for SEmf (STmf < 2T) by labour legislation (Directive 2013/35/EC), increased CMR usage increases vertigo-related hazards experienced by MRI personnel (a re-evaluation of electromagnetic safety hazards is suggested in the case of these or similar changes in work organisation).
Collapse