1
|
Aranega AE, Franco D. Posttranscriptional Regulation by Proteins and Noncoding RNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:313-339. [PMID: 38884719 DOI: 10.1007/978-3-031-44087-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Posttranscriptional regulation comprises those mechanisms occurring after the initial copy of the DNA sequence is transcribed into an intermediate RNA molecule (i.e., messenger RNA) until such a molecule is used as a template to generate a protein. A subset of these posttranscriptional regulatory mechanisms essentially are destined to process the immature mRNA toward its mature form, conferring the adequate mRNA stability, providing the means for pertinent introns excision, and controlling mRNA turnover rate and quality control check. An additional layer of complexity is added in certain cases, since discrete nucleotide modifications in the mature RNA molecule are added by RNA editing, a process that provides large mature mRNA diversity. Moreover, a number of posttranscriptional regulatory mechanisms occur in a cell- and tissue-specific manner, such as alternative splicing and noncoding RNA-mediated regulation. In this chapter, we will briefly summarize current state-of-the-art knowledge of general posttranscriptional mechanisms, while major emphases will be devoted to those tissue-specific posttranscriptional modifications that impact on cardiac development and congenital heart disease.
Collapse
Affiliation(s)
- Amelia E Aranega
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaén, Jaén, Spain.
| |
Collapse
|
2
|
Ganekal P, Vastrad B, Kavatagimath S, Vastrad C, Kotrashetti S. Bioinformatics and Next-Generation Data Analysis for Identification of Genes and Molecular Pathways Involved in Subjects with Diabetes and Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020309. [PMID: 36837510 PMCID: PMC9967176 DOI: 10.3390/medicina59020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
Background and Objectives: A subject with diabetes and obesity is a class of the metabolic disorder. The current investigation aimed to elucidate the potential biomarker and prognostic targets in subjects with diabetes and obesity. Materials and Methods: The next-generation sequencing (NGS) data of GSE132831 was downloaded from Gene Expression Omnibus (GEO) database. Functional enrichment analysis of DEGs was conducted with ToppGene. The protein-protein interactions network, module analysis, target gene-miRNA regulatory network and target gene-TF regulatory network were constructed and analyzed. Furthermore, hub genes were validated by receiver operating characteristic (ROC) analysis. A total of 872 DEGs, including 439 up-regulated genes and 433 down-regulated genes were observed. Results: Second, functional enrichment analysis showed that these DEGs are mainly involved in the axon guidance, neutrophil degranulation, plasma membrane bounded cell projection organization and cell activation. The top ten hub genes (MYH9, FLNA, DCTN1, CLTC, ERBB2, TCF4, VIM, LRRK2, IFI16 and CAV1) could be utilized as potential diagnostic indicators for subjects with diabetes and obesity. The hub genes were validated in subjects with diabetes and obesity. Conclusion: This investigation found effective and reliable molecular biomarkers for diagnosis and prognosis by integrated bioinformatics analysis, suggesting new and key therapeutic targets for subjects with diabetes and obesity.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga 577501, Karnataka, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag 582101, Karnataka, India
| | - Satish Kavatagimath
- Department of Pharmacognosy, K.L.E. College of Pharmacy, Belagavi 590010, Karnataka, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
- Correspondence: ; Tel.: +91-9480073398
| | - Shivakumar Kotrashetti
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
3
|
Parlatan U, Parlatan S, Sen K, Kecoglu I, Ulukan MO, Karakaya A, Erkanli K, Turkoglu H, Ugurlucan M, Unlu MB, Tanoren B. Atrial fibrillation designation with micro-Raman spectroscopy and scanning acoustic microscope. Sci Rep 2022; 12:6461. [PMID: 35440791 PMCID: PMC9018680 DOI: 10.1038/s41598-022-10380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
Atrial fibrillation (AF) is diagnosed with the electrocardiogram, which is the gold standard in clinics. However, sufficient arrhythmia monitoring takes a long time, and many of the tests are made in only a few seconds, which can lead arrhythmia to be missed. Here, we propose a combined method to detect the effects of AF on atrial tissue. We characterize tissues obtained from patients with or without AF by scanning acoustic microscopy (SAM) and by Raman spectroscopy (RS) to construct a mechano-chemical profile. We classify the Raman spectral measurements of the tissue samples with an unsupervised clustering method, k-means and compare their chemical properties. Besides, we utilize scanning acoustic microscopy to compare and determine differences in acoustic impedance maps of the groups. We compared the clinical outcomes with our findings using a neural network classification for Raman measurements and ANOVA for SAM measurements. Consequently, we show that the stiffness profiles of the tissues, corresponding to the patients with chronic AF, without AF or who experienced postoperative AF, are in agreement with the lipid-collagen profiles obtained by the Raman spectral characterization.
Collapse
Affiliation(s)
- Ugur Parlatan
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey.
| | - Seyma Parlatan
- Vocational School of Health Services, Istinye University, Istanbul, 34020, Turkey
| | - Kubra Sen
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
| | - Ibrahim Kecoglu
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey
| | - Mustafa Ozer Ulukan
- Department of Cardiovascular Surgery, Istanbul Medipol University, Istanbul, 34214, Turkey
| | - Atalay Karakaya
- Department of Cardiovascular Surgery, Istanbul Medipol University, Istanbul, 34214, Turkey
| | - Korhan Erkanli
- Department of Cardiovascular Surgery, Istanbul Medipol University, Istanbul, 34214, Turkey
| | - Halil Turkoglu
- Department of Cardiovascular Surgery, Istanbul Medipol University, Istanbul, 34214, Turkey
| | - Murat Ugurlucan
- Department of Cardiovascular Surgery, Istanbul Medipol University, Istanbul, 34214, Turkey
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul, 34342, Turkey.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Bukem Tanoren
- Department of Natural Sciences, Acıbadem University, Istanbul, 34684, Turkey
| |
Collapse
|
4
|
Zhao B, Wang W, Liu Y, Guan S, Wang M, Song F, Shangguan W, Miao S, Zhang X, Liu H, Liu E, Liang X. Establishment of a lncRNA-miRNA-mRNA network in a rat model of atrial fibrosis by whole transcriptome sequencing. J Interv Card Electrophysiol 2022; 63:723-736. [DOI: 10.1007/s10840-022-01120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
|
5
|
Yang ZY, Li PF, Li ZQ, Tang T, Liu W, Wang Y. Altered Expression of Transfer-RNA-Derived Small RNAs in Human With Rheumatic Heart Disease. Front Cardiovasc Med 2021; 8:716716. [PMID: 34926598 PMCID: PMC8671610 DOI: 10.3389/fcvm.2021.716716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Rheumatic heart disease (RHD) remains a severe public health problem in developing countries. Atrial fibrillation (AF) is a medical complication of RHD. Although the understanding of disease pathogenesis has advanced in recent years, the key questions need to be addressed. Transfer RNA–derived small RNAs (tsRNAs) are a novel type of short non-coding RNAs with potential regulatory functions in various physiological and pathological processes. The present study used tsRNAs sequencing to investigate the relationship between RHD and atrial fibrillation (AF). Three paired cardiac papillary muscles were taken from six rheumatic RHD patients with AF (3 cases) or without AF (3 cases) from January 2016 to January 2017 in Xiangya Hospital, Central South University. A total of 219 precisely matched tsRNAs were identified, and 77 tsRNAs (fold change > 2.0 and P < 0.05) were differently changed. Three tsRNAs (AS-tDR-001269, AS-tDR-001363, AS-tDR-006049) were randomly selected and confirmed by qRT-PCR. The results of qRT-PCR were consistent with tsRNAs sequencing, suggesting the tsRNAs sequencing was reliable. Subsequently, we predicted the target mRNAs of the three tsRNAs. Moreover, we verified the functions of tsRNAs targeting mRNAs in vitro. Finally, bioinformatics analysis indicated that the target genes were abundant in regulation of transcription, DNA binding, intracellular. Most of the genes were predicted to interplay with cytokine-cytokine receptor by KEGG analysis. Our findings uncover the pathological process of AF in RHD through tsRNAs sequencing. This research provides a new perspective for future research on elucidating the mechanism of AF in RHD and offers potential new candidates for the treatment and diagnosis.
Collapse
Affiliation(s)
- Zhao-Yu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhi-Qing Li
- Hunan University of Chinese Medicine, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
7
|
Wei F, Ren W, Zhang X, Wu P, Fan J. miR-425-5p is negatively associated with atrial fibrosis and promotes atrial remodeling by targeting CREB1 in atrial fibrillation. J Cardiol 2021; 79:202-210. [PMID: 34688515 DOI: 10.1016/j.jjcc.2021.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Progression of atrial fibrosis is vital for atrial remodeling in atrial fibrillation (AF). The main objective of the present study was to explore the association between miR-425-5p and atrial fibrosis as well as the resultant impact on atrial remodeling in AF. METHODS Firstly, miRNAs sequencing and quantitative real-time polymerase chain reaction was used to screen and verify the miRNAs expression level in plasma and atrial tissue in AF patients. The left atrial fibrosis was evaluated with the left atrial low voltage area by using left atrial voltage matrix mapping. Cell counting kit-8 was used to detect fibroblasts proliferation. The AF mouse model was established using acetylcholine-CaCl2 injection for 7 days. Target gene prediction software, luciferase assay, and western blotting were employed to confirm the direct targets of miR-425-5p. RESULTS Firstly, we demonstrated that miR-425-5p was downregulated in plasma and atrial tissue among the patients who suffered from AF. We then confirmed that the plasma's miR-425-5p level was negatively correlated with left atrial fibrosis in persistent AF, and catheter ablation could restore the decreased plasma miR-425-5p. Besides, receiver operating characteristic curve analysis revealed the miR-425-5p not only could differentiate AF from healthy control wit area under the curve (AUC) 0.921, but also discriminated persistent AF from paroxysmal AF with AUC 0.888. Furthermore, downregulation of miR-425-5p could promote atrial remodeling, and overexpression of miR-425-p could improve atrial remodeling and decrease susceptibility to atrial fibrillation. Finally, CREB1 was verified to be a direct target for miR-425-5p. CONCLUSIONS Our findings suggested that miR-425-5p could serve as novel atrial fibrosis biomarker and contributed to atrial remodeling in AF.
Collapse
Affiliation(s)
- Feiyu Wei
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Wenjun Ren
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xi Zhang
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Peng Wu
- Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China
| | - Jie Fan
- Faculty of Life Science and Biotechnology, Kunming University of Science and Technology, Kunming, Yunnan, China; Department of Cardiology, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, 157 Jinbi Road, Kunming, Yunnan 650032, China.
| |
Collapse
|
8
|
Zhu J, Zhu N, Xu J. miR‑101a‑3p overexpression prevents acetylcholine‑CaCl 2‑induced atrial fibrillation in rats via reduction of atrial tissue fibrosis, involving inhibition of EZH2. Mol Med Rep 2021; 24:740. [PMID: 34435649 PMCID: PMC8404104 DOI: 10.3892/mmr.2021.12380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
Atrial fibrillation (AF), a clinically common heart arrhythmia, can result in left ventricular hypofunction, embolism and infarction. MicroRNA (miR)‑101a‑3p is lowly expressed in atrial tissues of patients with AF, but its role in AF remains unknown. In the present study, an AF model in rats was established via intravenous injection of acetylcholine (Ach)‑CaCl2. The downregulation of miR‑101a‑3p and upregulation of enhancer of zeste 2 homolog 2 (EZH2) were observed in AF model rats, indicating the involvement of miR‑101a‑3p and EZH2 in AF development. To study the effect of miR‑101a‑3p on AF in vivo, AF model rats were intramyocardially injected with lentivirus expressing miR‑101a‑3p. Electrocardiogram analysis identified that miR‑101a‑3p overexpression restored disappeared P wave and R‑R interphase changes in Ach‑CaCl2‑induced rats. Overexpression of miR‑101a‑3p also increased the atrial effective refractory period, reduced AF incidence and shortened duration of AF. Histological changes in atrial tissues were observed after H&E and Masson staining, which demonstrated that miR‑101a‑3p reduced atrial remodeling and fibrosis in AF model rats. Moreover, EZH2 expression was downregulated in atrial tissues by miR‑101a‑3p induction. Immunohistochemistry for collagen Ⅰ and collagen III revealed a reduction in atrial collagen synthesis following miR‑101a‑3p overexpression in AF model rats. Additionally, miR‑101a‑3p lowered the expression of pro‑fibrotic biomarkers, including TGF‑β1, connective tissue growth factor, fibronectin and α‑smooth muscle actin. The luciferase reporter assay results also indicated that EZH2 was a target gene of miR‑101a‑3p. Taken together, it was found that miR‑101a‑3p prevented AF in rats possibly via inhibition of collagen synthesis and atrial fibrosis by targeting EZH2, which provided a potential target for preventing AF.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Cardiology, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P.R. China
| | - Ning Zhu
- Department of Respiratory Medicine, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China
| | - Jian Xu
- Department of Cardiology, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P.R. China
| |
Collapse
|
9
|
Zhai X, Zhang Y, Xin S, Cao P, Lu J. Insights Into the Involvement of Circular RNAs in Autoimmune Diseases. Front Immunol 2021; 12:622316. [PMID: 33717126 PMCID: PMC7947908 DOI: 10.3389/fimmu.2021.622316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are single-stranded, endogenous, non-coding RNA (ncRNA) molecules formed by the backsplicing of messenger RNA (mRNA) precursors and have covalently closed circular structures without 5′-end caps and 3′-end polyadenylation [poly(A)] tails. CircRNAs are characterized by abundant species, stable structures, conserved sequences, cell- or tissue-specific expression, and widespread and stable presence in many organisms. Therefore, circRNAs can be used as biomarkers for the prediction, diagnosis, and treatment of a variety of diseases. Autoimmune diseases (AIDs) are caused by defects in immune tolerance or abnormal immune regulation, which leads to damage to host organs. Due to the complexity of the pathophysiological processes of AIDs, clinical therapeutics have been suboptimal. The emergence of circRNAs sheds new light on the treatment of AIDs. In particular, circRNAs mainly participate in the occurrence and development of AIDs by sponging targets. This review systematically explains the formation, function, mechanism, and characteristics of circRNAs in the context of AIDs. With a deeper understanding of the pathophysiological functions of circRNAs in the pathogenesis of AIDs, circRNAs may become reasonable, accurate, and effective biomarkers for the diagnosis and treatment of AIDs in the future.
Collapse
Affiliation(s)
- Xingyu Zhai
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yunfei Zhang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China.,National Healthcare Commission Key Laboratory of Carcinogenesis, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
10
|
miR-520d suppresses rapid pacing-induced apoptosis of atrial myocytes through mediation of ADAM10. J Mol Histol 2021; 52:207-217. [PMID: 33547542 DOI: 10.1007/s10735-020-09938-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
MicroRNAs (miRNAs) play a key role in various pathological processes like atrial fibrillation (AF). However, the mechanisms remain unclear. Herein, this study was undertaken to probe the roles of ADAM10 and its targeting miR-520d in rapid pacing-induced apoptosis in atrial myocytes. In this study, the atrial myocytes grew adherently with irregular morphology. Immunofluorescence showed that more than 90% of atrial myocytes were α-sarcomeric actin (α-SCA) positive, indicating that the primary cells were positive for α-SCA staining and atrial myocytes were successfully isolated. The pacing atrial myocyte model was established after rapid pacing stimulation and we found the rapid pacing stimulation caused elevated ADAM10 and suppressed miR-520d. CCK-8 assay was applied for evaluation of cell viability, TUNEL staining for assessment of cell apoptosis and dual-luciferase reporter gene assay for verification of the targeting relationship between miR-520d and ADAM10. Overexpression of miR-520d or silencing of ADAM10 could enhance cell viability and reduce cell apoptosis in the rapid pacing-induced atrial myocytes. ADAM10 was a target gene of miR-520d. MiR-520d negatively targeted ADAM10, thereby promoting cell viability and inhibiting apoptosis in rapid pacing atrial myocyte model. In summary, miR-520d enhances atrial myocyte viability and inhibits cell apoptosis in rapid pacing-induced AF mouse model through negative mediation of ADAM10.
Collapse
|
11
|
Heier CR, Zhang A, Nguyen NY, Tully CB, Panigrahi A, Gordish-Dressman H, Pandey SN, Guglieri M, Ryan MM, Clemens PR, Thangarajh M, Webster R, Smith EC, Connolly AM, McDonald CM, Karachunski P, Tulinius M, Harper A, Mah JK, Fiorillo AA, Chen YW. Multi-Omics Identifies Circulating miRNA and Protein Biomarkers for Facioscapulohumeral Dystrophy. J Pers Med 2020; 10:jpm10040236. [PMID: 33228131 PMCID: PMC7711540 DOI: 10.3390/jpm10040236] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022] Open
Abstract
The development of therapeutics for muscle diseases such as facioscapulohumeral dystrophy (FSHD) is impeded by a lack of objective, minimally invasive biomarkers. Here we identify circulating miRNAs and proteins that are dysregulated in early-onset FSHD patients to develop blood-based molecular biomarkers. Plasma samples from clinically characterized individuals with early-onset FSHD provide a discovery group and are compared to healthy control volunteers. Low-density quantitative polymerase chain reaction (PCR)-based arrays identify 19 candidate miRNAs, while mass spectrometry proteomic analysis identifies 13 candidate proteins. Bioinformatic analysis of chromatin immunoprecipitation (ChIP)-seq data shows that the FSHD-dysregulated DUX4 transcription factor binds to regulatory regions of several candidate miRNAs. This panel of miRNAs also shows ChIP signatures consistent with regulation by additional transcription factors which are up-regulated in FSHD (FOS, EGR1, MYC, and YY1). Validation studies in a separate group of patients with FSHD show consistent up-regulation of miR-100, miR-103, miR-146b, miR-29b, miR-34a, miR-454, miR-505, and miR-576. An increase in the expression of S100A8 protein, an inflammatory regulatory factor and subunit of calprotectin, is validated by Enzyme-Linked Immunosorbent Assay (ELISA). Bioinformatic analyses of proteomics and miRNA data further support a model of calprotectin and toll-like receptor 4 (TLR4) pathway dysregulation in FSHD. Moving forward, this panel of miRNAs, along with S100A8 and calprotectin, merit further investigation as monitoring and pharmacodynamic biomarkers for FSHD.
Collapse
Affiliation(s)
- Christopher R. Heier
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | - Aiping Zhang
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Nhu Y Nguyen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Christopher B. Tully
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Aswini Panigrahi
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Heather Gordish-Dressman
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Sachchida Nand Pandey
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | | | - Monique M. Ryan
- The Royal Children’s Hospital, Melbourne University, Parkville, Victoria 3052, Australia;
| | - Paula R. Clemens
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Mathula Thangarajh
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA;
| | | | - Edward C. Smith
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27705, USA;
| | - Anne M. Connolly
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH 43205, USA;
| | - Craig M. McDonald
- Department of Physical Medicine and Rehabilitation, University of California at Davis Medical Center, Sacramento, CA 95817, USA;
| | - Peter Karachunski
- Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Mar Tulinius
- Department of Pediatrics, Gothenburg University, Queen Silvia Children’s Hospital, 41685 Göteborg, Sweden;
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Jean K. Mah
- Deparment of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, T2N T3B, Calgary, AB 6A81N4, Canada;
| | - Alyson A. Fiorillo
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA; (H.G.-D.); (A.A.F.)
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20010, USA; (A.Z.); (N.Y.N.); (C.B.T.); (A.P.); (S.N.P.)
- Correspondence: (C.R.H.); (Y.-W.C.)
| | | |
Collapse
|
12
|
Xu J, Lei S, Sun S, Zhang W, Zhu F, Yang H, Xu Q, Zhang B, Li H, Zhu M, Hu X, Zhang H, Tang B, Kang P. MiR-324-3p Regulates Fibroblast Proliferation via Targeting TGF-β1 in Atrial Fibrillation. Int Heart J 2020; 61:1270-1278. [PMID: 33191361 DOI: 10.1536/ihj.20-423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation (AF), one of the common clinical arrhythmias, lacks effective treatment manners. Cardiac fibroblasts play an essential role in myocardial fibrosis and cardiac remodeling, which are involved in AF progression. Reportedly, MicroRNAs (miRNAs) regulate the myocardial fibrosis in AF. However, whether miR-324-3p involves myocardial fibrosis in AF and the tentative molecular mechanisms of miR-324-3p regulating cardiac fibroblasts during AF remains unknown. In the present study, miR-324-3p was found to be decreased in patients with AF and AF rat model. Next, we investigated the effect of miR-324-3p on myocardial fibroblast proliferation through miR-324-3p overexpression and found that miR-324-3p inhibited fibroblast proliferation in vitro. Furthermore, we found that miR-324-3p directly targeted transforming growth factor β1 in fibroblast, which may be involved in the development of myocardial fibrosis during AF. Meanwhile, miR-324-3p mimics treatment suppressed the PI3K/AKT signaling pathway in fibroblast. These results demonstrated a molecular mechanism of miR-324-3p regulating fibroblast proliferation in vitro, which might provide a novel potential treatment manner in AF in clinic.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College
| | - Sisi Lei
- Department of Pediatrics, The First Affiliated Hospital of Bengbu Medical College
| | - Shuo Sun
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Wei Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Feiyu Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| | - Haichen Yang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Qingmei Xu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| | - Bing Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Hui Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Mingli Zhu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Xiangwen Hu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Heng Zhang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College
| | - Pinfang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical College.,Center for Cardiovascular and Cerebrovascular Research, Bengbu Medical College
| |
Collapse
|
13
|
Ravelli F, Masè M. MicroRNAs: New contributors to mechano-electric coupling and atrial fibrillation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:146-156. [PMID: 33011190 DOI: 10.1016/j.pbiomolbio.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation (AF) is a multifactorial disease, which often occurs in the presence of underlying cardiac abnormalities and is supported by electrophysiological and structural alterations, generally referred to as atrial remodeling. Abnormal substrates are commonly encountered in various conditions that predispose to AF, such as hypertension, heart failure, obesity, and sleep apnea, in which atrial stretch plays a key mechanistic role. Emerging evidence suggests a role for microRNAs (small non-coding RNAs) in the pathogenesis of AF, where they can act as post-transcriptional regulators of the genes involved in atrial remodeling. This review summarizes the experimental and clinical evidence that supports the role of microRNAs in the modulation of atrial electrical and structural remodeling with a focus on overload-induced atrial alterations, and discusses the potential contribution of microRNAs to mechano-electrical coupling and AF.
Collapse
Affiliation(s)
- Flavia Ravelli
- Laboratory of Biophysics and Biosignals, University of Trento, Trento, Italy.
| | - Michela Masè
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy; Healthcare Research and Innovation Program, IRCS-HTA, Bruno Kessler Foundation, Trento, Italy
| |
Collapse
|