1
|
Fu H, Shan D, Li J, Swallah MS, Yang X, Ji L, Wang S, Gong H, Lyu B, Yu H. Potential functionality of β-conglycinin with subunit deficiencies: soy protein may regulate glucose and lipid metabolism. Food Funct 2022; 13:12291-12302. [DOI: 10.1039/d2fo02869g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
3T3-L1 pre-adipocytes were used to reveal the impact of subunit-deficient β-conglycinin on cell proliferation, cell adipogenesis, and proteomic expression, and to gain insight into the potential of subunit-deficient β-conglycinin's functional characteristics.
Collapse
Affiliation(s)
- Hongling Fu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Dandan Shan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Mohammed Sharif Swallah
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Lei Ji
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hao Gong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- Division of Soybean Processing, Soybean Research & Development Center, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
2
|
Salinas T, Larosa V, Cardol P, Maréchal-Drouard L, Remacle C. Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review. Biochimie 2013; 100:207-18. [PMID: 24139906 DOI: 10.1016/j.biochi.2013.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/08/2013] [Indexed: 12/28/2022]
Abstract
Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.
Collapse
Affiliation(s)
- Thalia Salinas
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Véronique Larosa
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Pierre Cardol
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium
| | - Laurence Maréchal-Drouard
- Institut de Biologie Moléculaire des Plantes, UPR CNRS 2357, Associated with Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Claire Remacle
- Génétique des Microorganismes, Département de Sciences de la Vie, Institut de Botanique, B22, Université de Liège, B-4000 Liège, Belgium.
| |
Collapse
|
3
|
Heidarvand L, Maali-Amiri R. Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:459-469. [PMID: 23395538 DOI: 10.1016/j.jplph.2012.11.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 11/16/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Intensive and short-term strategies can aid in more rapid screening with informative and reliable results for long-term investigations under cold stress (CS). The integration of cellular analysis of chickpea during 0, 2, 4, 8, and 12h CS supplied us with novel possible responsive components and the possible interactions embedded inside, still remaining a Maze. Seedlings showed a biphasic pattern of responses over time. The transitory phase happened after 8h, when cells are presumably experiencing a new stage of responses and setting the stage for long-term adjustments. Physio-biochemical analysis confirmed the direct effect of fatty acids composition, lipoxygenase activity and antioxidant systems in cell responses under CS. Also, proteome results using MALDI-TOF-TOF and/or LC-MS/MS were able to differentiate changes in early phases of CS. Two-dimensional gel analysis results showed the possible targets of CS as mitochondria, chloroplast, organelle-nucleus communications, storage resources, stress and defense, protein degradation and signal transduction that confirmed the cell intended to re-establish a new homeostasis, in energy and primary metabolites to adapt to long-term CS. Here we propose a time course dynamic assessing multi-dimensional approaches for CS studies as one of the first studies in short-term treatment to progressively fill in the gaps between physio-biochemical and molecular events and touch the cell architecture for a better comprehension of the nature of plant stress response.
Collapse
Affiliation(s)
- Leila Heidarvand
- Department of Agronomy and Plant Breeding, University College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran
| | | |
Collapse
|
4
|
Kubo N, Arimura SI, Tsutsumi N, Kadowaki KI, Hirai M. Isolation and characterization of the pea cytochrome c oxidase Vb gene. Genome 2006; 49:1481-9. [PMID: 17426763 DOI: 10.1139/g06-105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.
Collapse
Affiliation(s)
- Nakao Kubo
- Graduate School of Agriculture, Kyoto Prefectural University, Kyoto Prefectural Institute of Agricultural Biotechnology, 74 Oji, Kitainayazuma, Seika, Soraku, Kyoto 619-0244, Japan.
| | | | | | | | | |
Collapse
|
5
|
Curi GC, Chan RL, Gonzalez DH. The leader intron of Arabidopsis thaliana genes encoding cytochrome c oxidase subunit 5c promotes high-level expression by increasing transcript abundance and translation efficiency. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2563-71. [PMID: 16061502 DOI: 10.1093/jxb/eri250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The involvement of regions located upstream of the translation start site in the expression of two Arabidopsis thaliana nuclear COX5c genes encoding subunit 5c of mitochondrial cytochrome c oxidase has been analysed. It was observed that these regions, which include a leader intron, direct the tissue-specific expression of the gus reporter gene, mainly in root and shoot meristems, actively growing tissues and vascular strands. Expression was also observed in flowers, specifically localized in anthers, stigma, and the receptacle, and in developing seeds. GUS activity measurements in protein extracts from transformed plants indicated that expression levels are higher than those observed with the constitutive CaMV 35S promoter. Removal of the leader intron produced a significant decrease in expression to values only slightly higher than those observed with a promoterless gus gene. Histochemical staining of plants transformed with the intronless construct revealed expression only in pollen, suggesting that regulatory elements capable of directing pollen-specific expression are present upstream of the intron. The COX5c-2 intron also increased GUS expression levels when fused in the correct orientation with the promoter of the unrelated COX5b-1 gene. Comparison of GUS activity values with the transcript levels suggests that the intron also increases translation efficiency of the corresponding mRNA. The results obtained point to an essential role of the intron present in the 5'-non-coding region of all known COX5c genes in directing the expression of these genes in plants.
Collapse
Affiliation(s)
- Graciela C Curi
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
6
|
Cardol P, González-Halphen D, Reyes-Prieto A, Baurain D, Matagne RF, Remacle C. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. PLANT PHYSIOLOGY 2005; 137:447-59. [PMID: 15710684 PMCID: PMC1065347 DOI: 10.1104/pp.104.054148] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/25/2004] [Accepted: 11/25/2004] [Indexed: 05/20/2023]
Affiliation(s)
- Pierre Cardol
- Genetics of Microorganisms , Institute of Plant Biology B22, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | |
Collapse
|
7
|
Ohtsu K, Nakazono M, Tsutsumi N, Hirai A. Characterization and expression of the genes for cytochrome c oxidase subunit VIb (COX6b) from rice and Arabidopsis thaliana. Gene 2001; 264:233-9. [PMID: 11250078 DOI: 10.1016/s0378-1119(01)00334-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many of the subunits of cytochrome c oxidase (COX) in the mitochondria of higher plants are encoded by nuclear genes. These genes are less characterized compared to mitochondrial-encoded genes. We previously isolated a cDNA encoding COX6b (designated OsCOX6b1 in this study) from the rice nuclear genome and analyzed its expression. The deduced protein had an extended N-terminus compared with human and yeast COX6b proteins. In this study, we identified another COX6b gene (OsCOX6b2) in rice and revealed that it was actually expressed. The deduced protein of this gene did not have an extended N-terminus and had about the same size as the human and yeast proteins. Genomic Southern hybridization analysis revealed that there was at least one OsCOX6b-homologus sequences in the rice genome other than OsCOX6b1 and OsCOX6b2. Furthermore, we identified three COX6b genes in a dicotyledonous plant, Arabidopsis thaliana. One of these genes (AtCOX6b1) was relatively long, with a length similar to that of OsCOX6b1, and the other two (AtCOX6b2 and AtCOX6b3) were shorter, with lengths similar to the length of OsCOX6b2. Genomic Southern hybridization analysis indicated there were no additional COX6b genes in the Arabidopsis genome. The coding regions of OsCOX6b1 and AtCOX6b1 were separated by four introns and those of OsCOX6b2, AtCOX6b2 and AtCOX6b3 were separated by three introns. A Northern hybridization analysis showed that OsCOX6b1, AtCOX6b1 and AtCOX6b3 were expressed in all organs examined, although with some differences in the amount of expression among the organs. OsCOX6b2 and AtCOX6b2 were strongly expressed in roots but most of the transcripts of AtCOX6b2 were degraded. The evolution of COX6b genes from rice and Arabidopsis is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Blotting, Northern
- Blotting, Southern
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Electron Transport Complex IV/genetics
- Exons
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Genes, Plant/genetics
- Introns
- Isoenzymes/genetics
- Molecular Sequence Data
- Oryza/enzymology
- Oryza/genetics
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- K Ohtsu
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
8
|
Tsuji H, Nakazono M, Saisho D, Tsutsumi N, Hirai A. Transcript levels of the nuclear-encoded respiratory genes in rice decrease by oxygen deprivation: evidence for involvement of calcium in expression of the alternative oxidase 1a gene. FEBS Lett 2000; 471:201-4. [PMID: 10767423 DOI: 10.1016/s0014-5793(00)01411-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We investigated the effect of oxygen on the expressions of respiratory genes encoded in the nuclear and mitochondrial genomes of rice (Oryza sativa L.). Hypoxic treatment decreased the transcript levels of nuclear-encoded, but not mitochondrial-encoded respiratory genes. The effects of ruthenium red (an inhibitor of Ca(2+) fluxes from organelles) and/or CaCl(2) on plants under hypoxic conditions suggested that Ca(2+) is a physiological transducer of a low-oxygen signaling pathway for expression of the alternative oxidase 1a gene (AOX1a), but not for expressions of genes involved in the cytochrome respiratory pathway, in rice.
Collapse
MESH Headings
- Anaerobiosis
- Calcium/antagonists & inhibitors
- Calcium/metabolism
- Calcium/pharmacology
- Cell Nucleus/genetics
- Cell Respiration/drug effects
- Cell Respiration/genetics
- DNA, Mitochondrial/genetics
- Down-Regulation/drug effects
- Gene Expression Regulation, Plant/drug effects
- Genes, Plant/genetics
- Genome, Plant
- Mitochondrial Proteins
- Models, Biological
- Oryza/cytology
- Oryza/enzymology
- Oryza/genetics
- Oryza/metabolism
- Oxidoreductases/genetics
- Oxygen/metabolism
- Oxygen/pharmacology
- Plant Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Ruthenium Red/pharmacology
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- H Tsuji
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|