1
|
Marquardt J, Yao LL, Okada H, Svitkina T, Bi E. The LKB1-like Kinase Elm1 Controls Septin Hourglass Assembly and Stability by Regulating Filament Pairing. Curr Biol 2020; 30:2386-2394.e4. [PMID: 32386534 PMCID: PMC7314651 DOI: 10.1016/j.cub.2020.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/20/2020] [Accepted: 04/16/2020] [Indexed: 01/22/2023]
Abstract
Septins form rod-shaped hetero-oligomeric complexes that assemble into filaments and other higher-order structures, such as rings or hourglasses, at the cell division site in fungal and animal cells [1-4] to carry out a wide range of functions, including cytokinesis and cell morphogenesis. However, the architecture of septin higher-order assemblies and their control mechanisms, including regulation by conserved kinases [5, 6], remain largely unknown. In the budding yeast Saccharomyces cerevisiae, the five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) localize to the bud neck and form an hourglass before cytokinesis that acts as a scaffold for proteins involved in multiple processes as well as a membrane-diffusible barrier between the mother and developing bud [7-9]. The hourglass is remodeled into a double ring that sandwiches the actomyosin ring at the onset of cytokinesis [10-13]. How septins are assembled into a highly ordered hourglass structure at the division site [13] is largely unexplored. Here we show that the LKB1-like kinase Elm1, which has been implicated in septin organization [14], cell morphogenesis [15], and mitotic exit [16, 17], specifically associates with the septin hourglass during the cell cycle and controls hourglass assembly and stability, especially for the daughter half, by regulating filament pairing and the functionality of its substrate, the septin-binding protein Bni5. This study illustrates how a protein kinase regulates septin architecture at the filament level and suggests that filament pairing is a highly regulated process during septin assembly and remodeling in vivo.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Lin-Lin Yao
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; Group of Cell Motility and Muscle Contraction, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Tatyana Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
2
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|
3
|
Homoto S, Izawa S. Persistent actin depolarization caused by ethanol induces the formation of multiple small cortical septin rings in yeast. J Cell Sci 2018; 131:jcs.217091. [PMID: 29991513 DOI: 10.1242/jcs.217091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Short-term exposure to severe ethanol stress has adverse effects on yeast cells. However, limited information is available on the effects of long-term exposure to severe ethanol stress. In this study, we examined the effects of a long-term treatment with a high ethanol concentration [10% (v/v)] on yeast morphology. We found that long-term severe ethanol stress induced the continuous depolarization of the actin cytoskeleton and hypertrophy in yeast cells, accompanied by the aberrant localization of septins, which formed multiple small cortical rings (MSCRs). The formation of MSCRs was also induced by the continuous depolarization of the actin cytoskeleton caused by a treatment with latrunculin-A, an effective inhibitor of actin polymerization. Unlike the formation of conventional septin rings, the formation of MSCRs did not require Cdc42 and its effectors, Gic1, Gic2 and Cla4. These results provide novel insights into the effects of persistent actin depolarization caused by long-term exposure to severe ethanol stress on yeast cytomorphology.
Collapse
Affiliation(s)
- Sena Homoto
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 2016; 27:2708-25. [PMID: 27385335 PMCID: PMC5007091 DOI: 10.1091/mbc.e16-05-0337] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
A tripartite split-GFP system faithfully reports the order of the subunits in septin hetero-octamers (and thus can serve as a “molecular ruler”), conversely yields little or no false signal even with very highly expressed cytosolic proteins, and detects authentic interactions of other cellular proteins that are bona fide septin-binding proteins. Various methods can provide a readout of the physical interaction between two biomolecules. A recently described tripartite split-GFP system has the potential to report by direct visualization via a fluorescence signal the intimate association of minimally tagged proteins expressed at their endogenous level in their native cellular milieu and can capture transient or weak interactions. Here we document the utility of this tripartite split-GFP system to assess in living cells protein–protein interactions in a dynamic cytoskeletal structure—the septin collar at the yeast bud neck. We show, first, that for septin–septin interactions, this method yields a robust signal whose strength reflects the known spacing between the subunits in septin filaments and thus serves as a “molecular ruler.” Second, the method yields little or no spurious signal even with highly abundant cytosolic proteins readily accessible to the bud neck (including molecular chaperone Hsp82 and glycolytic enzyme Pgk1). Third, using two proteins (Bni5 and Hsl1) that have been shown by other means to bind directly to septins at the bud neck in vivo, we validate that the tripartite split-GFP method yields the same conclusions and further insights about specificity. Finally, we demonstrate the capacity of this approach to uncover additional new information by examining whether three other proteins reported to localize to the bud neck (Nis1, Bud4, and Hof1) are able to interact physically with any of the subunits in the septin collar and, if so, with which ones.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
5
|
Finnigan GC, Takagi J, Cho C, Thorner J. Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 2015; 200:821-41. [PMID: 25971665 PMCID: PMC4512546 DOI: 10.1534/genetics.115.176495] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 02/07/2023] Open
Abstract
Septins are a family of GTP-binding proteins considered to be cytoskeletal elements because they self-assemble into filaments and other higher-order structures in vivo. In budding yeast, septins establish a diffusion barrier at the bud neck between a mother and daughter cell, promote membrane curvature there, and serve as a scaffold to recruit other proteins to the site of cytokinesis. However, the mechanism by which any septin engages a partner protein has been unclear. The two most related and recently evolved subunits appear to be Cdc11 and Shs1, and the basic building blocks for assembling septin structures are hetero-octameric rods (Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1). Loss of Cdc11 is not normally tolerated, whereas cells lacking Shs1 do not appear grossly abnormal. We established several different sensitized genetic backgrounds wherein Shs1 is indispensable, which allowed us to carry out the first comprehensive and detailed genetic analysis of Shs1 in vivo. Our analysis revealed several novel insights, including: (i) the sole portion of Shs1 essential for its function is a predicted coiled-coil-forming segment in its C-terminal extension (CTE); (ii) the CTE of Cdc11 shares this function; (iii) this role for the CTEs of Cdc11 and Shs1 is quite distinct from that of the CTEs of Cdc3 and Cdc12; and (iv) heterotypic Cdc11 and Shs1 junctions likely occur in vivo.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Julie Takagi
- Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Christina Cho
- Harvard School of Dental Medicine, Boston, Massachusetts 02115
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202 Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200 Harvard School of Dental Medicine, Boston, Massachusetts 02115
| |
Collapse
|
6
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|
7
|
Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G. A memory system of negative polarity cues prevents replicative aging. Cell 2014; 159:1056-1069. [PMID: 25416945 DOI: 10.1016/j.cell.2014.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 08/20/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
Abstract
Cdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a two-step mechanism of loading the Cdc42 antagonist Nba1 into CRMs to mark these compartments as refractory for a second round of Cdc42 activation. Our data indicate that Nba1 together with a cortically tethered adaptor protein confers memory of previous polarization events to translate this spatial legacy into a biochemical signal that ensures the local singularity of Cdc42 activation. "Memory loss" mutants that repeatedly use the same polarity site over multiple generations display nuclear segregation defects and a shorter lifespan. Our work thus established CRMs as negative polarity cues that prevent Cdc42 reactivation to sustain the fitness of replicating cells.
Collapse
Affiliation(s)
- Franz Meitinger
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Anton Khmelinskii
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Bahtiyar Kurtulmus
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Saravanan Palani
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Amparo Andres-Pons
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany
| | - Birgit Hub
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Michael Knop
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 1 Rue Laurent Fries, 67400 Illkirch Cedex, France
| | - Gislene Pereira
- Molecular Biology of Centrosomes and Cilia, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, Heidelberg 69120, Germany.
| |
Collapse
|
8
|
Examining the condition-specific antisense transcription in S. cerevisiae and S. paradoxus. BMC Genomics 2014; 15:521. [PMID: 24965678 PMCID: PMC4082610 DOI: 10.1186/1471-2164-15-521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Recent studies have demonstrated that antisense transcription is pervasive in budding yeasts and is conserved between Saccharomyces cerevisiae and S. paradoxus. While studies have examined antisense transcripts of S. cerevisiae for inverse expression in stationary phase and stress conditions, there is a lack of comprehensive analysis of the conditional specific evolutionary characteristics of antisense transcription between yeasts. Here we attempt to decipher the evolutionary relationship of antisense transcription of S. cerevisiae and S. paradoxus cultured in mid log, early stationary phase, and heat shock conditions. Results Massively parallel sequencing of sequence strand-specific cDNA library was performed from RNA isolated from S. cerevisiae and S. paradoxus cells at mid log, stationary phase and heat shock conditions. We performed this analysis using a stringent set of sense ORF transcripts and non-coding antisense transcripts that were expressed in all the three conditions, as well as in both species. We found the divergence of the condition-specific anti-sense transcription levels is higher than that in condition-specific sense transcription levels, suggesting that antisense transcription played a potential role in adapting to different conditions. Furthermore, 43% of sense-antisense pairs demonstrated inverse expression in either stationary phase or heat shock conditions relative to the mid log conditions. In addition, a large part of sense-antisense pairs (67%), which demonstrated inverse expression, were highly conserved between the two species. Our results were also concordant with known functional analyses from previous studies and with the evidence from mechanistic experiments of role of individual genes. Conclusions By performing a genome-scale computational analysis, we have tried to evaluate the role of antisense transcription in mediating sense transcription under different environmental conditions across and in two related yeast species. Our findings suggest that antisense regulation could control expression of the corresponding sense transcript via inverse expression under a range of different circumstances. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-521) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
10
|
Casolari JM, Thompson MA, Salzman J, Champion LM, Moerner WE, Brown PO. Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. PLoS One 2012; 7:e31912. [PMID: 22359641 PMCID: PMC3281097 DOI: 10.1371/journal.pone.0031912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023] Open
Abstract
Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe here a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches.
Collapse
Affiliation(s)
- Jason M. Casolari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael A. Thompson
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Lowry M. Champion
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
11
|
Garcia G, Bertin A, Li Z, Song Y, McMurray MA, Thorner J, Nogales E. Subunit-dependent modulation of septin assembly: budding yeast septin Shs1 promotes ring and gauze formation. ACTA ACUST UNITED AC 2011; 195:993-1004. [PMID: 22144691 PMCID: PMC3241732 DOI: 10.1083/jcb.201107123] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Substitution of specific terminal subunits within septin complexes and septin phosphorylation drive the formation of distinct higher-order septin assemblies in budding yeast. Septins are conserved guanosine triphosphate–binding cytoskeletal proteins involved in membrane remodeling. In budding yeast, five mitotic septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1), which are essential for cytokinesis, transition during bud growth from a patch to a collar, which splits into two rings in cytokinesis and is disassembled before the next cell cycle. Cdc3, Cdc10, Cdc11, and Cdc12 form an apolar octameric rod with Cdc11 at each tip, which polymerizes into straight paired filaments. We show that Shs1 substitutes for Cdc11, resulting in octameric rods that do not polymerize into filaments but associate laterally, forming curved bundles that close into rings. In vivo, half of shs1Δ mutant cells exhibit incomplete collars and disrupted neck filaments. Importantly, different phosphomimetic mutations in Shs1 can either prevent ring formation or promote formation of a gauzelike meshwork. These results show that a single alternative terminal subunit is sufficient to confer a distinctive higher-order septin ultrastructure that can be further regulated by phosphorylation.
Collapse
Affiliation(s)
- Galo Garcia
- Division of Biochemistry and Molecular Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Mukherjee D, Coon BG, Edwards DF, Hanna CB, Longhi SA, McCaffery JM, Wendland B, Retegui LA, Bi E, Aguilar RC. The yeast endocytic protein Epsin 2 functions in a cell-division signaling pathway. J Cell Sci 2009; 122:2453-63. [PMID: 19531587 DOI: 10.1242/jcs.041137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The epsins are a family of adaptors involved in recruiting other endocytic proteins, binding of ubiquitylated cargo and induction of membrane curvature. These molecules bear a characteristic epsin N-terminal homology (ENTH) domain and multiple peptide motifs that mediate protein-protein interactions. We have previously demonstrated that the ENTH domain of epsin is involved in Cdc42 signaling regulation. Here, we present evidence that yeast epsin 2 (Ent2) plays a signaling role during cell division. We observed that overexpression of the ENTH domain of Ent2 (ENTH2), but not Ent1, promoted the formation of chains of cells and aberrant septa. This dominant-negative effect resulted from ENTH2-mediated interference with septin assembly pathways. We mapped the ENTH2 determinants responsible for induction of the phenotype and found them to be important for efficient binding to the septin regulatory protein, Bem3. Supporting a physiological role for epsin 2 in cell division, the protein localized to sites of polarized growth and cytokinesis and rescued a defect in cell division induced by Bem3 misregulation. Collectively, our findings provide a potential molecular mechanism linking endocytosis (via epsin 2) with signaling pathways regulating cell division.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Department of Biological Sciences, Purdue Cancer Center, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
The spindle positioning protein Kar9p interacts with the sumoylation machinery in Saccharomyces cerevisiae. Genetics 2008; 180:2033-55. [PMID: 18832349 DOI: 10.1534/genetics.108.095042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate positioning of the mitotic spindle is important for the genetic material to be distributed evenly in dividing cells, but little is known about the mechanisms that regulate this process. Here we report that two microtubule-associated proteins important for spindle positioning interact with several proteins in the sumoylation pathway. By two-hybrid analysis, Kar9p and Bim1p interact with the yeast SUMO Smt3p, the E2 enzyme Ubc9p, an E3 Nfi1p, as well as Wss1p, a weak suppressor of a temperature-sensitive smt3 allele. The physical interaction between Kar9p and Ubc9p was confirmed by in vitro binding assays. A single-amino-acid substitution in Kar9p, L304P disrupted its two-hybrid interaction with proteins in the sumoylation pathway, but retained its interactions with the spindle positioning proteins Bim1p, Stu2p, Bik1p, and Myo2p. The kar9-L304P mutant showed defects in positioning the mitotic spindle, with the spindle located more distally than normal. Whereas wild-type Kar9p-3GFP normally localizes to only the bud-directed spindle pole body (SPB), Kar9p-L304P-3GFP was mislocalized to both SPBs. Using a reconstitution assay, Kar9p was sumoylated in vitro. We propose a model in which sumoylation regulates spindle positioning by restricting Kar9p to one SPB. These findings raise the possibility that sumoylation could regulate other microtubule-dependent processes.
Collapse
|
14
|
Pablo-Hernando ME, Arnaiz-Pita Y, Tachikawa H, del Rey F, Neiman AM, Vázquez de Aldana CR. Septins localize to microtubules during nutritional limitation in Saccharomyces cerevisiae. BMC Cell Biol 2008; 9:55. [PMID: 18826657 PMCID: PMC2584027 DOI: 10.1186/1471-2121-9-55] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/01/2008] [Indexed: 11/23/2022] Open
Abstract
Background In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane. Results Here, we demonstrate that nutrient limitation triggers a change in the localization of at least two vegetative septins (Cdc10 and Cdc11) from the bud neck to the microtubules. The association of Cdc10 and Cdc11 with microtubules persists into meiosis, and they are found associated with the meiotic spindle until the end of meiosis II. In addition, the meiosis-specific septin Spr28 displays similar behavior, suggesting that this is a common feature of septins. Septin association to microtubules is a consequence of the nutrient limitation signal, since it is also observed when haploid cells are incubated in sporulation medium and when haploid or diploid cells are grown in medium containing non-fermentable carbon sources. Moreover, during meiosis II, when the nascent prospore membrane is formed, septins moved from the microtubules to this membrane. Proper organization of the septins on the membrane requires the sporulation-specific septins Spr3 and Spr28. Conclusion Nutrient limitation in S. cerevisiae triggers the sporulation process, but it also induces the disassembly of the septin bud neck ring and relocalization of the septin subunits to the nucleus. Septins remain associated with microtubules during the meiotic divisions and later, during spore morphogenesis, they are detected associated to the nascent prospore membranes surrounding each nuclear lobe. Septin association to microtubules also occurs during growth in non-fermentable carbon sources.
Collapse
Affiliation(s)
- M Evangelina Pablo-Hernando
- Instituto de Microbiología Bioquímica, Departamento de Microbiología y Genética, CSIC/Universidad de Salamanca, 37007, Salamanca, Spain.
| | | | | | | | | | | |
Collapse
|
15
|
Phosphorylation by casein kinase 2 regulates Nap1 localization and function. Mol Cell Biol 2007; 28:1313-25. [PMID: 18086883 DOI: 10.1128/mcb.01035-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In Saccharomyces cerevisiae, the evolutionarily conserved nucleocytoplasmic shuttling protein Nap1 is a cofactor for the import of histones H2A and H2B, a chromatin assembly factor and a mitotic factor involved in regulation of bud formation. To understand the mechanism by which Nap1 function is regulated, Nap1-interacting factors were isolated and identified by mass spectrometry. We identified several kinases among these proteins, including casein kinase 2 (CK2), and a new bud neck-associated protein, Nba1. Consistent with our identification of the Nap1-interacting kinases, we showed that Nap1 is phosphorylated in vivo at 11 sites and that Nap1 is phosphorylated by CK2 at three substrate serines. Phosphorylation of these serines was not necessary for normal bud formation, but mutation of these serines to either alanine or aspartic acid resulted in cell cycle changes, including a prolonged S phase, suggesting that reversible phosphorylation by CK2 is important for cell cycle regulation. Nap1 can shuttle between the nucleus and cytoplasm, and we also showed that CK2 phosphorylation promotes the import of Nap1 into the nucleus. In conclusion, our data show that Nap1 phosphorylation by CK2 appears to regulate Nap1 localization and is required for normal progression through S phase.
Collapse
|
16
|
Iwase M, Luo J, Bi E, Toh-e A. Shs1 plays separable roles in septin organization and cytokinesis in Saccharomyces cerevisiae. Genetics 2007; 177:215-29. [PMID: 17603111 PMCID: PMC2013704 DOI: 10.1534/genetics.107.073007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Accepted: 06/25/2007] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7) form the septin ring at the bud neck during vegetative growth. We show here that disruption of SHS1 caused cold-sensitive growth in the W303 background, with cells arrested in chains, indicative of a cytokinesis defect. Surprisingly, the other four septins appeared to form an apparently normal septin ring in shs1Delta cells grown under the restrictive condition. We found that Myo1 and Iqg1, two components of the actomyosin contractile ring, and Cyk3, a component of the septum formation, were either delocalized or mislocalized in shs1Delta cells, suggesting that Shs1 plays supportive roles in cytokinesis. We also found that deletion of SHS1 enhanced or suppressed the septin defect in cdc10Delta and cdc11Delta cells, respectively, suggesting that Shs1 is involved in septin organization, exerting different effects on septin-ring assembly, depending on the composition of the septin subunits. Furthermore, we constructed an shs1-100c allele that lacks the coding sequence for the C-terminal 32 amino acids. This allele still displayed the genetic interactions with the septin mutants, but did not show cytokinesis defects as described above, suggesting that the roles of Shs1 in septin organization and cytokinesis are separable.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
17
|
Uzunova K, Göttsche K, Miteva M, Weisshaar SR, Glanemann C, Schnellhardt M, Niessen M, Scheel H, Hofmann K, Johnson ES, Praefcke GJK, Dohmen RJ. Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 2007; 282:34167-75. [PMID: 17728242 DOI: 10.1074/jbc.m706505200] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.
Collapse
Affiliation(s)
- Kristina Uzunova
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look at a juggler protein of extraordinary skills. FASEB J 2007; 21:1294-310. [PMID: 17317729 DOI: 10.1096/fj.06-7199rev] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nucleosome assembly protein Nap1 is used extensively in the chromatin field to reconstitute nucleosomal templates for structural and functional studies. Beyond its role in facilitating experimental investigation of nucleosomes, the highly conserved Nap1 is one of the best-studied members of the histone chaperone group. Here we review its numerous functions, focusing mainly on its roles in assembly and disassembly of the nucleosome particle, and its interactions with chromatin remodeling factors. Its presumed role in transcription through chromatin is also reviewed in detail. An attempt is made to clearly discriminate between fact and fiction, and to formulate the unresolved questions that need further attention. It is beyond doubt that the numerous, seemingly unrelated functions of this juggler protein have to be precisely channeled, coordinated, and regulated. Why nature endowed this specific protein with so many functions may remain a mystery. We are aware of the enormous challenge to the scientific community that understanding the mechanisms underlying these activities presents.
Collapse
Affiliation(s)
- Jordanka Zlatanova
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
19
|
Tronnersjö S, Hanefalk C, Balciunas D, Hu GZ, Nordberg N, Murén E, Ronne H. The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Genet Genomics 2006; 277:57-70. [PMID: 17043893 DOI: 10.1007/s00438-006-0171-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 09/14/2006] [Indexed: 11/25/2022]
Abstract
The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.
Collapse
Affiliation(s)
- Susanna Tronnersjö
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Kozminski KG, Alfaro G, Dighe S, Beh CT. Homologues of Oxysterol-Binding Proteins Affect Cdc42p- and Rho1p-Mediated Cell Polarization in Saccharomyces cerevisiae. Traffic 2006; 7:1224-42. [PMID: 17004323 DOI: 10.1111/j.1600-0854.2006.00467.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polarized cell growth requires the establishment of an axis of growth along which secretion can be targeted to a specific site on the cell cortex. How polarity establishment and secretion are choreographed is not fully understood, though Rho GTPase- and Rab GTPase-mediated signaling is required. Superimposed on this regulation are the functions of specific lipids and their cognate binding proteins. In a screen for Saccharomyces cerevisiae genes that interact with Rho family CDC42 to promote polarity establishment, we identified KES1/OSH4, which encodes a homologue of mammalian oxysterol-binding protein (OSBP). Other yeast OSH genes (OSBP homologues) had comparable genetic interactions with CDC42, implicating OSH genes in the regulation of CDC42-dependent polarity establishment. We found that the OSH gene family (OSH1-OSH7) promotes cell polarization by maintaining the proper localization of septins, the Rho GTPases Cdc42p and Rho1p, and the Rab GTPase Sec4p. Disruption of all OSH gene function caused specific defects in polarized exocytosis, indicating that the Osh proteins are collectively required for a secretory pathway implicated in the maintenance of polarized growth.
Collapse
Affiliation(s)
- Keith G Kozminski
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | | | | | | |
Collapse
|
21
|
Hung NJ, Johnson AW. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3718-27. [PMID: 16648468 PMCID: PMC1489010 DOI: 10.1128/mcb.26.10.3718-3727.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 02/23/2006] [Indexed: 11/20/2022] Open
Abstract
Arx1 and Rei1 are found on late pre-60S ribosomal particles containing the export adaptor Nmd3. Arx1 is related to methionine aminopeptidases (MetAPs), and Rei1 is a C2H2 zinc finger protein whose function in ribosome biogenesis has not been previously characterized. Arx1 and Rei1 localized predominately to the nucleus and cytoplasm, respectively, but could be coimmunoprecipitated, suggesting that they are transiently in the same 60S complex. arx1delta mutants showed a modest accumulation of 60S subunits in the nucleus, suggesting that Arx1 enhances 60S export. Deletion of REI1 led to cold sensitivity and redistribution of Arx1 to the cytoplasm, where it remained bound to free 60S subunits. However, deletion of ARX1 or the fusion of enhanced GFP (eGFP) to Rpl25 suppressed the cold sensitivity of an rei1delta mutant. The presence of eGFP on Rpl25 or its neighboring protein Rpl35 reduced the binding of Arx1 to 60S subunits, suggesting that Arx1 binds to 60S subunits in the vicinity of the exit tunnel. Mutations in Arx1 that disrupted its binding to 60S also suppressed an rei1delta mutant and restored the normal nuclear localization of Arx1. These results indicate that the cold sensitivity of rei1delta cells is due to the persistence of Arx1 on 60S subunits in the cytoplasm. Furthermore, these results suggest that Rei1 is needed for release of Arx1 from nascent 60S subunits after export to the cytoplasm but not for the subsequent nuclear import of Arx1.
Collapse
Affiliation(s)
- Nai-Jung Hung
- Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, 1 University Station, A5000, The University of Texas at Austin, Austin, Texas 78712-0162, USA
| | | |
Collapse
|
22
|
Aguilar RC, Longhi SA, Shaw JD, Yeh LY, Kim S, Schön A, Freire E, Hsu A, McCormick WK, Watson HA, Wendland B. Epsin N-terminal homology domains perform an essential function regulating Cdc42 through binding Cdc42 GTPase-activating proteins. Proc Natl Acad Sci U S A 2006; 103:4116-21. [PMID: 16537494 PMCID: PMC1449656 DOI: 10.1073/pnas.0510513103] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epsins are endocytic proteins with a structured epsin N-terminal homology (ENTH) domain that binds phosphoinositides and a poorly structured C-terminal region that interacts with ubiquitin and endocytic machinery, including clathrin and endocytic scaffolding proteins. Yeast has two redundant genes encoding epsins, ENT1 and ENT2; deleting both genes is lethal. We demonstrate that the ENTH domain is both necessary and sufficient for viability of ent1Deltaent2Delta cells. Mutational analysis of the ENTH domain revealed a surface patch that is essential for viability and that binds guanine nucleotide triphosphatase-activating proteins for Cdc42, a critical regulator of cell polarity in all eukaryotes. Furthermore, the epsins contribute to regulation of specific Cdc42 signaling pathways in yeast cells. These data support a model in which the epsins function as spatial and temporal coordinators of endocytosis and cell polarity.
Collapse
Affiliation(s)
- Rubén C. Aguilar
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Silvia A. Longhi
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Jonathan D. Shaw
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Lan-Yu Yeh
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Sean Kim
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Arne Schön
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Ariel Hsu
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - William K. McCormick
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Hadiya A. Watson
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
| | - Beverly Wendland
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Iwase M, Luo J, Nagaraj S, Longtine M, Kim HB, Haarer BK, Caruso C, Tong Z, Pringle JR, Bi E. Role of a Cdc42p effector pathway in recruitment of the yeast septins to the presumptive bud site. Mol Biol Cell 2006; 17:1110-25. [PMID: 16371506 PMCID: PMC1382302 DOI: 10.1091/mbc.e05-08-0793] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 12/01/2005] [Accepted: 12/02/2005] [Indexed: 11/11/2022] Open
Abstract
The septins are GTP-binding, filament-forming proteins that are involved in cytokinesis and other processes. In the yeast Saccharomyces cerevisiae, the septins are recruited to the presumptive bud site at the cell cortex, where they form a ring through which the bud emerges. We report here that in wild-type cells, the septins typically become detectable in the vicinity of the bud site several minutes before ring formation, but the ring itself is the first distinct structure that forms. Septin recruitment depends on activated Cdc42p but not on the normal pathway for bud-site selection. Recruitment occurs in the absence of F-actin, but ring formation is delayed. Mutant phenotypes and suppression data suggest that the Cdc42p effectors Gic1p and Gic2p, previously implicated in polarization of the actin cytoskeleton, also function in septin recruitment. Two-hybrid, in vitro protein binding, and coimmunoprecipitation data indicate that this role involves a direct interaction of the Gic proteins with the septin Cdc12p.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Iwase M, Okada S, Oguchi T, Toh-e A. Forchlorfenuron, a phenylurea cytokinin, disturbs septin organization in Saccharomyces cerevisiae. Genes Genet Syst 2005; 79:199-206. [PMID: 15514439 DOI: 10.1266/ggs.79.199] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Septins, which are involved in cytokinesis, have been identified in a variety of fungi and animal cells. For analysis of the function of septin, drugs targeting septin would be useful; however, no such drugs have been available hitherto. By serendipity, we found that forchlorfenuron (FCF, N-(2-chloro-4-pyridyl)-N-phenylurea, 4PU300), a synthetic plant cytokinin, disturbed cytokinesis in Saccharomyces cerevisiae. Upon administration of FCF, septin structures at the bud neck became deformed and filament-like septin appeared outside of the neck. Under these conditions, the localization of actin was normal and Gin4, which is localized at the bud neck in a septin-dependent manner, was found to remain at the location of apparently normal septin at the bud neck, whereas it was not co-localized to the deformed septin at the bud neck or to septin seen outside the bud neck. FCF administration immediately induced production of sporadic septin structures outside the bud neck, and these structures disappeared promptly upon removal of the drug. Taken together, these findings indicate that FCF maybe a promising drug for investigating the structure and function of septin.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
25
|
Kadota J, Yamamoto T, Yoshiuchi S, Bi E, Tanaka K. Septin ring assembly requires concerted action of polarisome components, a PAK kinase Cla4p, and the actin cytoskeleton in Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:5329-45. [PMID: 15371547 PMCID: PMC532014 DOI: 10.1091/mbc.e04-03-0254] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Septins are filament-forming proteins that function in cytokinesis in a wide variety of organisms. In budding yeast, the small GTPase Cdc42p triggers the recruitment of septins to the incipient budding site and the assembly of septins into a ring. We herein report that Bni1p and Cla4p, effectors of Cdc42p, are required for the assembly of the septin ring during the initiation of budding but not for its maintenance after the ring converts to a septin collar. In bni1Delta cla4-75-td mutant, septins were recruited to the incipient budding site. However, the septin ring was not assembled, and septins remained at the polarized growing sites. Bni1p, a formin family protein, is a member of the polarisome complex with Spa2p, Bud6p, and Pea2p. All spa2Delta cla4-75-td, bud6Delta cla4-75-td, and pea2Delta cla4-75-td mutants showed defects in septin ring assembly. Bni1p stimulates actin polymerization for the formation of actin cables. Point mutants of BNI1 that are specifically defective in actin cable formation also exhibited septin ring assembly defects in the absence of Cla4p. Consistently, treatment of cla4Delta mutant with the actin inhibitor latrunculin A inhibited septin ring assembly. Our results suggest that polarisome components and Cla4p are required for the initial assembly of the septin ring and that the actin cytoskeleton is involved in this process.
Collapse
Affiliation(s)
- Jun Kadota
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Medicine, N15 W7, Kita-ku, Sapporo, 060-0815, Japan
| | | | | | | | | |
Collapse
|
26
|
Iwase M, Toh-e A. Ybr267w is a New Cytoplasmic Protein Belonging to the Mitotic Signaling Network of Saccharomyces cerevisiae. Cell Struct Funct 2004; 29:1-15. [PMID: 15107529 DOI: 10.1247/csf.29.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
YBR267w designated REI1 (required for isotropic bud growth) was isolated by two-hybrid screening using NIS1 encoding the neck protein as bait. Disruption of REI1 exhibited cold sensitive growth but did not exhibit a morphological defect. However, Deltarei1Deltanap1, Deltarei1Deltacla4 and Deltarei1Deltagin4 double disruptants exhibited an elongated cell morphology, which was suppressed by the disruption of SWE1, indicating that REI1 is a new member of genes belonging to the mitotic signaling network that negatively regulates Swe1 kinase. Deltanap1 cells displayed a lower Gin4 kinase activity and a lower Gin4 protein level, both of which were recovered nearly to a wild type level in Deltarei1Deltanap1 cells. Interaction between Rei1 and Gin4 was suggested from our observation that Rei1 inhibited Gin4 kinase activity although weakly. The facts that although Deltarei1Deltanap1 cells displayed a severer elongated bud phenotype than Deltanap1 cells, Gin4 kinase activity in Deltarei1Deltanap1 cells was higher than in Deltanap1 cells, and that introduction of plasmid carrying a kinase inactive gin4 mutant gene into Deltarei1Deltagin4 cells suppressed their morphological defect, indicate that kinase activity of Gin4 is not required for isotropic bud growth. We found that Rei1 is localized to the cytoplasm throughout the cell cycle. In view of the fact that members belonging to the mitotic signaling network are localized to the bud neck, at least at some stage of the cell cycle, Rei1 is a unique component of this pathway.
Collapse
Affiliation(s)
- Masayuki Iwase
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| | | |
Collapse
|
27
|
Shields CM, Taylor R, Nazarenus T, Cheatle J, Hou A, Tapprich A, Haifley A, Atkin AL. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Curr Genet 2003; 44:184-94. [PMID: 13680156 DOI: 10.1007/s00294-003-0442-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2003] [Revised: 08/19/2003] [Accepted: 08/20/2003] [Indexed: 10/26/2022]
Abstract
Saccharomyces cerevisiae ATS1 (alpha-tubulin suppressor 1) was originally identified as a high-copy suppressor of class two alpha-tubulin mutations and was proposed to have a regulatory role in coordinating the microtubule state with the cell cycle. Here, we show that Ats1p interacts with Nap1p, a cytoplasmic protein that regulates the activity of the Cdc28p/Clb2p complex. Loss of Nap1p results in a delayed switch from polar to isotropic bud growth. The delayed switch results in elongated buds. Nap1p and Ats1p interact in two-hybrid and co-immunoprecipitation assays. Both nap1Delta and ats1Delta cells have a Clb2p-dependent elongated bud morphology. Deletion of ATS1 partially suppresses the elongated bud morphology and benomyl resistance of nap1Delta mutants. Our results suggest Ats1p might regulate coordination of the microtubule state with the cell cycle through an interaction with Nap1p.
Collapse
Affiliation(s)
- Christina M Shields
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Toh-e A, Oguchi T. Genetic characterization of genes encoding enzymes catalyzing addition of phospho-ethanolamine to the glycosylphosphatidylinositol anchor in Saccharomyces cerevisiae. Genes Genet Syst 2002; 77:309-22. [PMID: 12441642 DOI: 10.1266/ggs.77.309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MPC1/GPI13/YLL031C, one of the genes involved in the addition of phospho-ethanolamine to the glycosylphosphatidylinositol (GPI) anchor core, is an essential gene. Three available temperature-sensitive mutant alleles, mpc1-3, mpc1-4, and mpc1-5, displayed different phenotypes to each other and, correspondingly, these mutants were found to have different mutations in the MPC1 ORF. Temperature-sensitivity of mpc1-5 mutants was suppressed by 5 mM ZnSO(4) and by 5 mM MnCl(2). Multicopy suppressors were isolated from mpc1-5 mutant. Suppressors commonly effective to mpc1-4 and mpc1-5 mutations are PSD1, encoding phosphatidylserine decarboxylase, and ECM33, which were found to suppress the temperature-sensitive phenotype shown by the fsr2-1 and las21delta mutants, those of which have defects in the GPI anchor synthesis. PSD2, encoding another phosphatidylserine decarboxylase that is localized in Golgi/vacuole, was found to be able to serve as a multicopy suppressor of mpc1 and fsr2-1 mutants but not of the las21 delta mutant. In contrast to psd1delta, psd2delta showed a synthetic growth defect with mpc1 mutants but not with fsr2-1 or las21delta. Furthermore, psd1delta psd2delta mpc1 triple mutants did not form colonies on nutrient medium unless ethanolamine was supplied to the medium, whereas psd1delta psd2 delta fsr2-1 or psd1delta psd2 delta las21delta triple mutants grew on nutrient medium without supplementation of ethanolamine. These observations suggest that Mpc1 preferentially utilizes phosphatidylethanolamine produced by Psd2 that is localized in Golgi/vacuole. fsr2-1 dpl1 Delta psd1delta strains showed slower growth than fsr2-1 dpl1delta psd2 delta, suggesting that Fsr2 enzyme depends more on Dpl1 and Psd1 for production of phosphatidylethanolamine. Las21 did not show preference for the metabolic pathway to produce phosphatidylethanolamine.
Collapse
Affiliation(s)
- Akio Toh-e
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Hongo, Japan.
| | | |
Collapse
|