1
|
Wu M, Wang P, Gao M, Shen D, Zhao Q. Transcriptome analysis of the eggs of the silkworm pale red egg (rep-1) mutant at 36 hours after oviposition. PLoS One 2020; 15:e0237242. [PMID: 32764803 PMCID: PMC7413551 DOI: 10.1371/journal.pone.0237242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/22/2020] [Indexed: 12/04/2022] Open
Abstract
The egg stage is one of the most critical periods in the life history of silkworms, during which physiological processes such as sex determination, tissue organ formation and differentiation, diapause and pigmentation occur. In addition, egg color gradually emerges around 36h after oviposition. The red egg mutant rep-1, which was recently discovered in the C1(H) wild-type, C1(H) exhibits a brown egg color. In this study, the transcriptome of the eggs was analyzed 36h after oviposition. Between the rep-1 mutant and the C1(H) wild-type, 800 differentially expressed genes (DEGs) were identified, including 325 up-regulated genes and 475 down-regulated genes. These DEGs were mainly involved in biological processes (metabolic process, cellular process, biological regulation and regulation of biological process and localization), cellular components (membrane, membrane part, cell, cell part and organelle) and molecular functions (binding, catalytic activity, transporter activity, structural molecule activity and molecular transducer activity). The pathway enrichment of these DEGs was performed based on the KEGG database, and the results indicated that these DEGs were mainly involved in pathways in the following categories: metabolic pathways, longevity-regulating pathway-multiple species, protein processing in endoplasmic reticulum, peroxisome, carbon metabolism and purine metabolism. Further analysis showed that a large number of silkworm growth- and development-related genes and ommochrome synthesis- and metabolism-related genes were differentially expressed, most of which were up-regulated in the mutant. Our research findings provide new experimental evidence for research on ommochrome pigmentation and lay the foundation for further research on the mechanism of the rep-1 mutant.
Collapse
Affiliation(s)
- Meina Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pingyang Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- Guangxi Zhuang Autonomous Region Research Academy of Sericultural Science, Guangxi, Nanning, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
- * E-mail:
| |
Collapse
|
2
|
Sastre DE, Pulschen AA, Basso LGM, Benites Pariente JS, Marques Netto CGC, Machinandiarena F, Albanesi D, Navarro MVAS, de Mendoza D, Gueiros-Filho FJ. The phosphatidic acid pathway enzyme PlsX plays both catalytic and channeling roles in bacterial phospholipid synthesis. J Biol Chem 2020; 295:2148-2159. [PMID: 31919098 DOI: 10.1074/jbc.ra119.011147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/19/2019] [Indexed: 12/29/2022] Open
Abstract
PlsX is the first enzyme in the pathway that produces phosphatidic acid in Gram-positive bacteria. It makes acylphosphate from acyl-acyl carrier protein (acyl-ACP) and is also involved in coordinating phospholipid and fatty acid biosyntheses. PlsX is a peripheral membrane enzyme in Bacillus subtilis, but how it associates with the membrane remains largely unknown. In the present study, using fluorescence microscopy, liposome sedimentation, differential scanning calorimetry, and acyltransferase assays, we determined that PlsX binds directly to lipid bilayers and identified its membrane anchoring moiety, consisting of a hydrophobic loop located at the tip of two amphipathic dimerization helices. To establish the role of the membrane association of PlsX in acylphosphate synthesis and in the flux through the phosphatidic acid pathway, we then created mutations and gene fusions that prevent PlsX's interaction with the membrane. Interestingly, phospholipid synthesis was severely hampered in cells in which PlsX was detached from the membrane, and results from metabolic labeling indicated that these cells accumulated free fatty acids. Because the same mutations did not affect PlsX transacylase activity, we conclude that membrane association is required for the proper delivery of PlsX's product to PlsY, the next enzyme in the phosphatidic acid pathway. We conclude that PlsX plays a dual role in phospholipid synthesis, acting both as a catalyst and as a chaperone protein that mediates substrate channeling into the pathway.
Collapse
Affiliation(s)
- Diego E Sastre
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - André A Pulschen
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Luis G M Basso
- Departamento de Física, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | | | | | - Federico Machinandiarena
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Daniela Albanesi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina
| | - Marcos V A S Navarro
- Grupo de Biofísica Molecular "Sergio Mascarenhas," Instituto de Física de São Carlos, Departamento de Biofísica Molecular, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe S2002LRK, Argentina.
| | - Frederico J Gueiros-Filho
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
3
|
Pelicaen R, Gonze D, Teusink B, De Vuyst L, Weckx S. Genome-Scale Metabolic Reconstruction of Acetobacter pasteurianus 386B, a Candidate Functional Starter Culture for Cocoa Bean Fermentation. Front Microbiol 2019; 10:2801. [PMID: 31921009 PMCID: PMC6915089 DOI: 10.3389/fmicb.2019.02801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023] Open
Abstract
Acetobacter pasteurianus 386B is a candidate functional starter culture for the cocoa bean fermentation process. To allow in silico simulations of its related metabolism in response to different environmental conditions, a genome-scale metabolic model for A. pasteurianus 386B was reconstructed. This is the first genome-scale metabolic model reconstruction for a member of the genus Acetobacter. The metabolic network reconstruction process was based on extensive genome re-annotation and comparative genomics analyses. The information content related to the functional annotation of metabolic enzymes and transporters was placed in a metabolic context by exploring and curating a Pathway/Genome Database of A. pasteurianus 386B using the Pathway Tools software. Metabolic reactions and curated gene-protein-reaction associations were bundled into a genome-scale metabolic model of A. pasteurianus 386B, named iAp386B454, containing 454 genes, 322 reactions, and 296 metabolites embedded in two cellular compartments. The reconstructed model was validated by performing growth experiments in a defined medium, which revealed that lactic acid as the sole carbon source could sustain growth of this strain. Further, the reconstruction of the A. pasteurianus 386B genome-scale metabolic model revealed knowledge gaps concerning the metabolism of this strain, especially related to the biosynthesis of its cell envelope and the presence or absence of metabolite transporters.
Collapse
Affiliation(s)
- Rudy Pelicaen
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- (IB) - Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| | - Didier Gonze
- (IB) - Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
- Unité de Chronobiologie Théorique, Service de Chimie Physique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- (IB) - Interuniversity Institute of Bioinformatics in Brussels (ULB-VUB), Brussels, Belgium
| |
Collapse
|
4
|
Abstract
Glyceroglycolipids are very important in Gram-positive bacteria and cyanobacteria. In Bacillus subtilis, a model organism for the Gram-positive bacteria, the ugtP mutant, which lacks glyceroglucolipids, shows abnormal morphology. Lack of glucolipids has many consequences: abnormal localization of the cytoskeletal protein MreB and activation of some extracytoplasmic function (ECF) sigma factors (σM, σV and σX) in the log phase are two examples. Conversely, the expression of monoglucosyldiacylglycerol (MGlcDG) by 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii (alMGS) almost completely suppresses the ugtP disruptant phenotype. Activation of ECF sigmas in the ugtP mutant is decreased by alMGS expression, and is suppressed to low levels by MgSO4 addition. When alMGS and alDGS (A. laidlawii 1,2-diacylglycerol-3-glucose (1-2)-glucosyltransferase producing diglucosyldiacylglycerol (DGlcDG)) are simultaneously expressed, σX activation is repressed to wild type level. These observations suggest that MGlcDG molecules are required for maintenance of B. subtilis cell shape and regulation of ECF sigmas, and that DGlcDG regulates σX activity. The activation of ECF sigmas is not accompanied by proteolysis of anti-σ. Thus, glyceroglucolipids may have the specific role of helping membrane proteins function by acting in the manner of chaperones.
Collapse
Affiliation(s)
- Satoshi Matsuoka
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University
| |
Collapse
|
5
|
Yao J, Rock CO. Exogenous fatty acid metabolism in bacteria. Biochimie 2017; 141:30-39. [PMID: 28668270 DOI: 10.1016/j.biochi.2017.06.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/26/2017] [Indexed: 10/19/2022]
Abstract
Bacterial type II fatty acid synthesis (FASII) is a target for novel antibiotic development. All bacteria encode for mechanisms to incorporate exogenous fatty acids, and some bacteria can use exogenous fatty acids to bypass FASII inhibition. Bacteria encode three different mechanisms for activating exogenous fatty acids for incorporation into phospholipid synthesis. Exogenous fatty acids are converted into acyl-CoA in Gammaproteobacteria such as E. coli. Acyl-CoA molecules constitute a separate pool from endogenously synthesized acyl-ACP. Acyl-CoA can be used for phospholipid synthesis or broken down by β-oxidation, but cannot be used for lipopolysaccharide synthesis. Exogenous fatty acids are converted into acyl-ACP in some Gram-negative bacteria. The resulting acyl-ACP undergoes the same fates as endogenously synthesized acyl-ACP. Exogenous fatty acids are converted into acyl-phosphates in Gram-positive bacteria, and can be used for phospholipid synthesis or become acyl-ACP. Only the order Lactobacillales can use exogenous fatty acids to bypass FASII inhibition. FASII shuts down completely in presence of exogenous fatty acids in Lactobacillales, allowing Lactobacillales to synthesize phospholipids entirely from exogenous fatty acids. Inhibition of FASII cannot be bypassed in other bacteria because FASII is only partially down-regulated in presence of exogenous fatty acid or FASII is required to synthesize essential metabolites such as β-hydroxyacyl-ACP. Certain selective pressures such as FASII inhibition or growth in biofilms can select for naturally occurring one step mutations that attenuate endogenous fatty acid synthesis. Although attempts have been made to estimate the natural prevalence of these mutants, culture-independent metagenomic methods would provide a better estimate.
Collapse
Affiliation(s)
- Jiangwei Yao
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Sastre DE, Bisson-Filho A, de Mendoza D, Gueiros-Filho FJ. Revisiting the cell biology of the acyl-ACP:phosphate transacylase PlsX suggests that the phospholipid synthesis and cell division machineries are not coupled inBacillus subtilis. Mol Microbiol 2016; 100:621-34. [DOI: 10.1111/mmi.13337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Diego Emiliano Sastre
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo; São Paulo SP Brazil
| | - Alexandre Bisson-Filho
- Department of Molecular and Cellular Biology and Faculty of Arts and Sciences (FAS) Center for Systems Biology; Harvard University; Cambridge MA 02138 USA
| | - Diego de Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario; 2000 Rosario Argentina
| | | |
Collapse
|
7
|
Jankute M, Byng CV, Alderwick LJ, Besra GS. Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis. Glycoconj J 2015; 31:475-83. [PMID: 25117516 PMCID: PMC4213368 DOI: 10.1007/s10719-014-9549-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mycobacterium species have a highly complex and unique cell wall that consists of a large macromolecular structure termed the mycolyl-arabinogalactan-peptidoglycan (mAGP) complex. This complex is essential for growth, survival and virulence of the human pathogen Mycobacterium tuberculosis, and is the target of several anti-tubercular drugs. The closely related species Corynebacterium glutamicum has proven useful in the study of orthologous M. tuberculosis genes and proteins involved in mAGP synthesis. This study examines the construction of a protein-protein interaction network for the major cell wall component arabinogalactan in C. glutamicum based on the use of a bacterial two-hybrid system. We have identified twenty-four putative homotypic and heterotypic protein interactions in vivo. Our results demonstrate an association between glycosyltransferases, GlfT1 and AftB, and interaction between the sub-units of decaprenylphosphoribose epimerase, DprE1 and DprE2. These analyses have also shown that AftB interacts with AftA, which catalyzes the addition of the first three arabinose units onto the galactan chain. Both AftA and AftB associate with other arabinofuranosyltransferases, including Emb and AftC, that elongate and branch the arabinan domain. Moreover, a number of proteins involved in arabinogalactan biosynthesis were shown to form dimers or multimers. These findings provide a useful recourse for understanding the biosynthesis and function of the mycobacterial cell wall, as well as providing new therapeutic targets.
Collapse
Affiliation(s)
- Monika Jankute
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
8
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
9
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
10
|
Takada H, Fukushima-Tanaka S, Morita M, Kasahara Y, Watanabe S, Chibazakura T, Hara H, Matsumoto K, Yoshikawa H. An essential enzyme for phospholipid synthesis associates with theBacillus subtilisdivisome. Mol Microbiol 2013; 91:242-55. [DOI: 10.1111/mmi.12457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Hiraku Takada
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| | - Sanae Fukushima-Tanaka
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| | - Masato Morita
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science; Hokkaido University; Kita 19 Nishi 8 Kita-ku Sapporo Hokkaido Japan
| | - Satoru Watanabe
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| | - Taku Chibazakura
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakura Saitama 338-8570 Japan
| | - Kouji Matsumoto
- Department of Biochemistry and Molecular Biology; Graduate School of Science and Engineering; Saitama University; 255 Shimo-ohkubo Sakura Saitama 338-8570 Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka Setagaya-ku Tokyo 156-8502 Japan
| |
Collapse
|
11
|
Parsons JB, Rock CO. Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 2013; 52:249-76. [PMID: 23500459 PMCID: PMC3665635 DOI: 10.1016/j.plipres.2013.02.002] [Citation(s) in RCA: 307] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
Abstract
Membrane lipid homeostasis is a vital facet of bacterial cell physiology. For decades, research in bacterial lipid synthesis was largely confined to the Escherichia coli model system. This basic research provided a blueprint for the biochemistry of lipid metabolism that has largely defined the individual steps in bacterial fatty acid and phospholipids synthesis. The advent of genomic sequencing has revealed a surprising amount of diversity in the genes, enzymes and genetic organization of the components responsible for bacterial lipid synthesis. Although the chemical steps in fatty acid synthesis are largely conserved in bacteria, there are surprising differences in the structure and cofactor requirements for the enzymes that perform these reactions in Gram-positive and Gram-negative bacteria. This review summarizes how the explosion of new information on the diversity of biochemical and genetic regulatory mechanisms has impacted our understanding of bacterial lipid homeostasis. The potential and problems of developing therapeutics that block pathogen phospholipid synthesis are explored and evaluated. The study of bacterial lipid metabolism continues to be a rich source for new biochemistry that underlies the variety and adaptability of bacterial life styles.
Collapse
Affiliation(s)
- Joshua B Parsons
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | | |
Collapse
|
12
|
Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 2012; 58:325-34. [PMID: 22841567 DOI: 10.1016/j.ymeth.2012.07.018] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/29/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022] Open
Abstract
The bacterial two-hybrid system based on the reconstitution of adenylate cyclase in Escherichia coli (BACTH) was described 14years ago (Karimova, Pidoux, Ullmann, and Ladant, 1998, PNAS, 95:5752). For microbiologists, it is a practical and powerful alternative to the use of the widely spread yeast two-hybrid technology for testing protein-protein interactions. In this review, we aim at giving the reader clear and most importantly simple instructions that should break any reticence to try the technique. Yet, we also add recommendations in the use of the system, related to its specificities. Finally, we expose the advantages and disadvantages of the technique, and review its diverse applications in the literature, which should help in deciding if it is the appropriate method to choose for the case at hand.
Collapse
|