1
|
Zhu C, Liu L, Crowell O, Zhao H, Brutnell TP, Jackson D, Kellogg EA. The CLV3 Homolog in Setaria viridis Selectively Controls Inflorescence Meristem Size. FRONTIERS IN PLANT SCIENCE 2021; 12:636749. [PMID: 33659018 PMCID: PMC7917188 DOI: 10.3389/fpls.2021.636749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/21/2021] [Indexed: 05/17/2023]
Abstract
The CLAVATA pathway controls meristem size during inflorescence development in both eudicots and grasses, and is initiated by peptide ligands encoded by CLV3/ESR-related (CLE) genes. While CLV3 controls all shoot meristems in Arabidopsis, evidence from cereal grasses indicates that different meristem types are regulated by different CLE peptides. The rice peptide FON2 primarily controls the size of the floral meristem, whereas the orthologous peptides CLE7 and CLE14 in maize have their most dramatic effects on inflorescence and branch meristems, hinting at diversification among CLE responses in the grasses. Setaria viridis is more closely related to maize than to rice, so can be used to test whether the maize CLE network can be generalized to all members of subfamily Panicoideae. We used CRISPR-Cas9 in S. viridis to knock out the SvFON2 gene, the closest homolog to CLV3 and FON2. Svfon2 mutants developed larger inflorescence meristems, as in maize, but had normal floral meristems, unlike Osfon2, suggesting a panicoid-specific CLE network. Vegetative traits such as plant height, tiller number and leaf number were not significantly different between mutant and wild type plants, but time to heading was shorter in the mutants. In situ hybridization showed strong expression of Svfon2 in the inflorescence and branch meristems, consistent with the mutant phenotype. Using bioinformatic analysis, we predicted the co-expression network of SvFON2 and its signaling components, which included genes known to control inflorescence architecture in maize as well as genes of unknown function. The similarity between SvFON2 function in Setaria and maize suggests that its developmental specialization in inflorescence meristem control may be shared among panicoid grasses.
Collapse
Affiliation(s)
- Chuanmei Zhu
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Lei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Olivia Crowell
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Hui Zhao
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Institute of Tropical Bioscience and Biotechnology and Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Thomas P. Brutnell
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Elizabeth A. Kellogg
- Donald Danforth Plant Science Center, St. Louis, MO, United States
- *Correspondence: Elizabeth A. Kellogg
| |
Collapse
|
2
|
Whitewoods CD. Evolution of CLE peptide signalling. Semin Cell Dev Biol 2020; 109:12-19. [PMID: 32444290 DOI: 10.1016/j.semcdb.2020.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
CLEs are small non-cell autonomous signalling peptides that regulate cell division rate and orientation in a variety of developmental contexts. Recent years have generated a huge amount of research on CLE function across land plants, characterising their role across the whole plant; they control stem cell division in the shoot, root and cambial meristems, balance developmental investment into symbiosis, regulate leaf development, pattern stomata and control axillary branching. They have even been co-opted by parasitic nematodes to mediate infection. This review synthesises these recent findings and embeds them in an evolutionary context, outlining the likely evolution of the CLE signalling pathway. I use this framework to infer common mechanistic themes and pose key future questions for the field.
Collapse
|
3
|
Chandran AKN, Bhatnagar N, Yoo YH, Moon S, Park SA, Hong WJ, Kim BG, An G, Jung KH. Meta-expression analysis of unannotated genes in rice and approaches for network construction to suggest the probable roles. PLANT MOLECULAR BIOLOGY 2018; 96:17-34. [PMID: 29086189 DOI: 10.1007/s11103-017-0675-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
This work suggests 2020 potential candidates in rice for the functional annotation of unannotated genes using meta-analysis of anatomical samples derived from microarray and RNA-seq technologies and this information will be useful to identify novel morphological agronomic traits. Although the genome of rice (Oryza sativa) has been sequenced, 14,365 genes are considered unannotated because they lack putative annotation information. According to the Rice Genome Annotation Project Database ( http://rice.plantbiology.msu.edu/ ), the proportion of functionally characterized unannotated genes (0.35%) is quite limited when compared with the approximately 3.9% of annotated genes with assigned putative functions. Researchers require additional information to help them investigate the molecular mechanisms associated with those unannotated genes. To determine which of them might regulate morphological or physiological traits in the rice genome, we conducted a meta-analysis of expression data that covered a wide range of tissue/organ samples. Overall, 2020 genes showed cultivar-, tissue-, or organ-preferential patterns of expression. Representative candidates from featured groups were validated by RT-PCR, and the GUS reporter system was used to validate the expression of genes that were clustered according to their leaf or root preference. Taking a molecular and genetics approach, we examined meta-expression data and found that 127 genes were differentially expressed between japonica and indica rice cultivars. This is potentially significant for future agronomic applications. We also used a T-DNA insertional mutant and performed a co-expression network analysis of Sword shape dwarf1 (SSD1), a gene that regulates cell division. This network was refined via RT-PCR analysis. Our results suggested that SSD1 represses the expression of four genes related to the processes of DNA replication or cell division and provides insight into possible molecular mechanisms. Together, these strategies present a valuable tool for in-depth characterization of currently unannotated genes.
Collapse
Affiliation(s)
- Anil Kumar Nalini Chandran
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Nikita Bhatnagar
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
- Molecular Breeding Division, National Academy of Agricultural Science, RDA, Jeonju, 54875, Republic of Korea
| | - Yo-Han Yoo
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sun-Ah Park
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Beom-Gi Kim
- Molecular Breeding Division, National Academy of Agricultural Science, RDA, Jeonju, 54875, Republic of Korea
| | - Gynheung An
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
4
|
Goad DM, Zhu C, Kellogg EA. Comprehensive identification and clustering of CLV3/ESR-related (CLE) genes in plants finds groups with potentially shared function. THE NEW PHYTOLOGIST 2017; 216:605-616. [PMID: 27911469 DOI: 10.1111/nph.14348] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/14/2016] [Indexed: 05/06/2023]
Abstract
CLV3/ESR (CLE) proteins are important signaling peptides in plants. The short CLE peptide (12-13 amino acids) is cleaved from a larger pre-propeptide and functions as an extracellular ligand. The CLE family is large and has resisted attempts at classification because the CLE domain is too short for reliable phylogenetic analysis and the pre-propeptide is too variable. We used a model-based search for CLE domains from 57 plant genomes and used the entire pre-propeptide for comprehensive clustering analysis. In total, 1628 CLE genes were identified in land plants, with none recognizable from green algae. These CLEs form 12 groups within which CLE domains are largely conserved and pre-propeptides can be aligned. Most clusters contain sequences from monocots, eudicots and Amborella trichopoda, with sequences from Picea abies, Selaginella moellendorffii and Physcomitrella patens scattered in some clusters. We easily identified previously known clusters involved in vascular differentiation and nodulation. In addition, we found a number of discrete groups whose function remains poorly characterized. Available data indicate that CLE proteins within a cluster are likely to share function, whereas those from different clusters play at least partially different roles. Our analysis provides a foundation for future evolutionary and functional studies.
Collapse
Affiliation(s)
- David M Goad
- Department of Biology, Washington University in St Louis, One Brookings Drive, St Louis, MO, 63130, USA
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| | - Chuanmei Zhu
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| | - Elizabeth A Kellogg
- Donald Danforth Plant Science Center, 975 North Warson Rd, St Louis, MO, 63132, USA
| |
Collapse
|
5
|
Yamaguchi YL, Ishida T, Sawa S. CLE peptides and their signaling pathways in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4813-26. [PMID: 27229733 DOI: 10.1093/jxb/erw208] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cell-to-cell communication is crucial for the coherent functioning of multicellular organisms, and they have evolved intricate molecular mechanisms to achieve such communication. Small, secreted peptide hormones participate in cell-to-cell communication to regulate various physiological processes. One such family of plant peptide hormones is the CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) family, whose members play crucial roles in the differentiation of shoot and root meristems. Recent biochemical and genetic studies have characterized various CLE signaling modules, which include CLE peptides, transmembrane receptors, and downstream intracellular signaling components. CLE signaling systems are conserved across the plant kingdom but have divergent modes of action in various developmental processes in different species. Moreover, several CLE peptides play roles in symbiosis, parasitism, and responses to abiotic cues. Here we review recent studies that have provided new insights into the mechanisms of CLE signaling.
Collapse
Affiliation(s)
- Yasuka L Yamaguchi
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|