1
|
Manik RK, Mahmud Z, Mishu ID, Hossen MS, Howlader ZH, Nabi AHMN. Multidrug Resistance Profiles and Resistance Mechanisms to β-Lactams and Fluoroquinolones in Bacterial Isolates from Hospital Wastewater in Bangladesh. Curr Issues Mol Biol 2023; 45:6485-6502. [PMID: 37623228 PMCID: PMC10453463 DOI: 10.3390/cimb45080409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Multidrug resistance (MDR) is one of the deadliest public health concerns of the 21st century, rendering many powerful antibiotics ineffective. The current study provides important insights into the prevalence and mechanisms of antibiotic resistance in hospital wastewater isolates. In this study, we determined the MDR profile of 68 bacterial isolates collected from five different hospitals in Dhaka, Bangladesh. Of them, 48 bacterial isolates were identified as Enterobacteriaceae. Additionally, we investigated the prevalence and distribution of five beta-lactam resistance genes, as well as quinolone resistance mechanisms among the isolates. The results of this study showed that 87% of the wastewater isolates were resistant to at least three different antibiotic classes, as revealed using the disc diffusion method. Resistance to β-lactams was the most common, with 88.24% of the isolates being resistant, closely followed by macrolides (80.88% resistant). Polymyxin was found to be the most effective against wastewater isolates, with 29.41% resistant isolates. The most common β-lactam resistance genes found in wastewater isolates were blaTEM (76.09%), blaCTX-M1 (71.74%), and blaNDM (67.39%). Two missense mutations in the quinolone resistance-determining region (QRDR) of gyrA (S83L and D87N) and one in both parC (S80I) and parE (S458A) were identified in all isolates, and one in parE (I529L), which had not previously been identified in Bangladesh. These findings suggest that hospital wastewater acts as an important reservoir of antibiotic-resistant bacteria wherein resistance mechanisms to β-lactams and fluoroquinolones are obvious. Our data also emphasize the need for establishing a nationwide surveillance system for antibiotic resistance monitoring to ensure that hospitals sanitize their wastewater before disposal, and regulation to ensure hospital wastewater is kept away from community settings.
Collapse
Affiliation(s)
- Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md Sourav Hossen
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zakir Hossain Howlader
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
2
|
Antibiotic Resistance in Proteus mirabilis: Mechanism, Status, and Public Health Significance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a specific opportunistic pathogen of many infections including urinary tract infections (UTIs). Risk factors are linked with the acquisition of multidrug-resistant (MDR) to 3 or more classes of antimicrobials) strains. The resistance in extended-spectrum alpha-lactamase is rare, but the rising resistance in extended-spectrum beta-lactamase (ESBL) producing strains is a matter of concern. β-lactamases and antibiotic modifying enzymes mainly constitute the ESBLs resistance mechanism by hydrolyzing the antibiotics. Mutation or Porin loss could lead to the reduced permeability of antibiotics, enhanced efflux pump activity hindering the antibiotic access to the target site, antibiotic failure to bind at the target site because of the target modification, and lipopolysaccharide mutation causing the resistance against polymyxin antibiotics. This review aimed to explore various antimicrobial resistance mechanisms in Proteus mirabilis and their impact on public health status.
Collapse
|
3
|
Juliana Martins F, Savacini Sagrillo F, Josiane Vinturelle Medeiros R, Gonçalves de Souza A, Rodrigues Pinto Costa A, Silva Novais J, Alves Miceli L, R Campos V, Marie Sá Figueiredo A, Claudia Cunha A, Lidmar von Ranke N, Lamim Bello M, de A Abrahim-Vieira B, M T De Souza A, A Ratcliffe N, da Costa Santos Boechat F, Cecília Bastos Vieira de Souza M, Rangel Rodrigues C, Carla Castro H. Evaluation of biological activities of quinone-4-oxoquinoline derivatives against pathogens of clinical importance. Curr Top Med Chem 2022; 22:973-991. [PMID: 35524665 DOI: 10.2174/1568026622666220504124710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Microbial resistance has become a worldwide public health problem, and may lead to morbidity and mortality in affected patients. OBJECTIVE Therefore, this work aimed to evaluate the antibacterial activity of quinone-4-oxoquinoline derivatives. METHOD These derivatives were evaluated against Gram-positive and Gram-negative bacteria by their antibacterial activity, anti-biofilm, and hemolytic activities and by in silico assays. RESULTS The quinone-4-oxoquinoline derivatives presented broad-spectrum antibacterial activities, and in some cases were more active than commercially available reference drugs. These compounds also inhibited bacterial adhesion and the assays revealed seven non-hemolytic derivatives. The derivatives seem to cause damage to the bacterial cell membrane and those containing the carboxyl group at the C-3 position of the 4-quinolonic nucleus were more active than those containing a carboxyethyl group. CONCLUSION The isoquinoline-5,8-dione nucleus also favored antimicrobial activity. The study showed that the target of the derivatives must be a non-conventional hydrophobic allosteric binding pocket on the DNA gyrase enzyme.
Collapse
Affiliation(s)
- Francislene Juliana Martins
- Federal Fluminense University, Biology Institute, Postgraduate Program in Science and Biotechnology, Niterói, Rio de Janeiro, Brazil
| | - Fernanda Savacini Sagrillo
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | | | - Alan Gonçalves de Souza
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Amanda Rodrigues Pinto Costa
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Juliana Silva Novais
- Federal Fluminense University, Medical School, Postgraduate in Pathology, Niterói, Rio de Janeiro, Brazil.,Universidade Estácio de Sá (UNESA), Faculdade de Farmácia, São Gonçalo, Rio de Janeiro, Brazil
| | - Leonardo Alves Miceli
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Vinícius R Campos
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Agnes Marie Sá Figueiredo
- Federal University of Rio de Janeiro, Microbiology Institute Professor Paulo Goes, Department of Medical Microbiology, Rio de Janeiro, Brazil
| | - Anna Claudia Cunha
- Federal Fluminense University, Chemistry Institute, Department of Organic Chemistry, Niterói, Rio de Janeiro, Brazil
| | - Natalia Lidmar von Ranke
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Murilo Lamim Bello
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Bárbara de A Abrahim-Vieira
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Alessandra M T De Souza
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Norman A Ratcliffe
- Department of Biosciences, College of Science Swansea University, SA2 8PP. UK
| | | | | | - Carlos Rangel Rodrigues
- Federal University of Rio de Janeiro, Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Rio de Janeiro, Brazil
| | - Helena Carla Castro
- Federal Fluminense University, Biology Institute, Postgraduate Program in Science and Biotechnology, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Mohammed MA, Salim MTA, Anwer BE, Aboshanab KM, Aboulwafa MM. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci Rep 2021; 11:20136. [PMID: 34635692 PMCID: PMC8505613 DOI: 10.1038/s41598-021-99230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Among bacterial species implicated in hospital-acquired infections are the emerging Pan-Drug Resistant (PDR) and Extensively Drug-Resistant (XDR) Acinetobacter (A.) baumannii strains as they are difficult to eradicate. From 1600 clinical specimens, only 100 A. baumannii isolates could be recovered. A high prevalence of ≥ 78% resistant isolates was recorded for the recovered isolates against a total of 19 tested antimicrobial agents. These isolates could be divided into 12 profiles according to the number of antimicrobial agents to which they were resistant. The isolates were assorted as XDR (68; 68%), Multi-Drug Resistant (MDR: 30; 30%), and PDR (2; 2%). Genotypically, the isolates showed three major clusters with similarities ranging from 10.5 to 97.8% as revealed by ERIC-PCR technique. As a resistance mechanism to fluoroquinolones (FQs), target site mutation analyses in gyrA and parC genes amplified from twelve selected A. baumannii isolates and subjected to sequencing showed 12 profiles. The selected isolates included two CIP-susceptible ones, these showed the wild-type profile of being have no mutations. For the ten selected CIP-resistant isolates, 9 of them (9/10; 90%) had 1 gyrA/1 parC mutations (Ser 81 → Leu mutation for gyrA gene and Ser 84 → Leu mutation for parC gene). The remaining CIP-resistant isolate (1/10; 10%) had 0 gyrA/1 parC mutation (Ser 84 → Leu mutation for parC gene). Detection of plasmid-associated resistance genes revealed that the 86 ciprofloxacin-resistant isolates carry qnrA (66.27%; 57/86), qnrS (70.93%; 61/86), aac (6')-Ib-cr (52.32%; 45/86), oqxA (73.25%; 63/86) and oqxB (39.53%; 34/86), while qepA and qnrB were undetected in these isolates. Different isolates were selected from profiles 1, 2, and 3 and qnrS, acc(6,)-ib-cr, oqxA, and oqxB genes harbored by these isolates were amplified and sequenced. The BLAST results revealed that the oqxA and oqxB sequences were not identified previously in A. baumannii but they were identified in Klebsiella aerogenes strain NCTC9793 and Klebsiella pneumoniae, respectively. On the other hand, the sequence of qnrS, and acc(6,)-ib-cr showed homology to those of A. baumannii. MDR, XDR, and PDR A. baumannii isolates are becoming prevalent in certain hospitals. Chromosomal mutations in the sequences of GyrA and ParC encoding genes and acquisition of PAFQR encoding genes (up to five genes per isolate) are demonstrated to be resistance mechanisms exhibited by fluoroquinolones resistant A. baumannii isolates. It is advisable to monitor the antimicrobial resistance profiles of pathogens causing nosocomial infections and properly apply and update antibiotic stewardship in hospitals and outpatients to control infectious diseases and prevent development of the microbial resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Mostafa Ahmed Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Mohammed T A Salim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Bahaa E Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai, Egypt.
| |
Collapse
|