1
|
Liu Y, Hu Y, Zhao C, Lu Q. CircRNA B cell linker regulates cisplatin sensitivity in nonsmall cell lung cancer via microRNA-25-3p/BarH‑like homeobox 2 axis. Anticancer Drugs 2023; 34:640-651. [PMID: 36602424 DOI: 10.1097/cad.0000000000001349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin (DDP) was a commonly used drug in the treatment of nonsmall cell lung cancer (NSCLC). However, the current resistance of patients to DDP seriously affected its therapeutic effect. Circular RNAs (circRNAs) have been reported to regulate drug resistance in cells. The purpose of this paper is to study the effect of circRNA B cell linker (circ_BLNK) in DDP resistance of NSCLC. The abundances of circ_BLNK, microRNA-25-3p (miR-25-3p) and BarH‑like homeobox 2 (BARX2) were examined by quantitative real-time PCR and western blot analysis. Cell proliferation and apoptosis were detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay, EdU assay and flow cytometry. Transwell assay was applied to assess cell migration and invasion. Protein levels were quantified by western blot analysis. Dual-luciferase reporter assay was enforced to confirm the links among circ_BLNK, miR-25-3p and BARX2. The mice models were enforced to evaluate tumorigenicity. Herein, circ_BLNK and BARX2 were lower-expressed, whereas miR-25-3p was higher-expressed in A549/DDP and H1299/DDP cells than their homologous parental NSCLC cells. Circ_BLNK increases improved DDP sensitivity of NSCLC cells by promoting cell apoptosis and inhibiting proliferation, migration and invasion. Moreover, we confirmed that circ_BLNK regulated BARX2 by inhibiting miR-25-3p. Accordingly, overexpression of circ_BLNK improved DDP sensitivity of NSCLC cells via miR-25-3p/BARX2 axis. Besides, circ_BLNK reduced cell resistance to DDP, thereby inhibiting tumor development in mice. Circ_BLNK promoted the DDP sensitivity of NSCLC via regulating miR-25-3p/BARX2 axis.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Thoracic Surgery
| | | | - Chong Zhao
- Respiratory and Critical Care Medicine, Yichun People' s Hospital & The Affiliated Yichun Hospital of Nanchang University, Yichang, China
| | | |
Collapse
|
2
|
Yu S, Yang Y, Yang H, Peng L, Wu Z, Sun L, Wu Z, Yu X, Yin X. Pancancer analysis of oncogenic BARX2 identifying its prognostic value and immunological function in liver hepatocellular carcinoma. Sci Rep 2023; 13:7560. [PMID: 37161008 PMCID: PMC10170086 DOI: 10.1038/s41598-023-34519-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
The transcription factor BarH-like homeobox 2 (BARX2), a member of the Bar-like homeobox gene family, is involved in cell proliferation, differentiation, immune responses and tumorigenesis. However, the potential role of BARX2 in the development of liver hepatocellular carcinoma (LIHC) remains unclear. Therefore, we aimed to study the biological role of BARX2 in hepatocellular carcinoma. Through the UALCAN, GTEx PORTAL, TIMER 2.0, LinkedOmics, SMART, MethSurv, Metascape, GSEA and STRING public databases, the BARX2 mRNA level, prognostic value, coexpressed genes, associated differentially expressed genes, DNA methylation and functional enrichment of LIHC patients were studied. The relationships between BARX2 expression and various clinical or genetic parameters of LIHC patients were determined using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and BEAT LIHC databases. In addition, the biological function of BARX2 in LIHC was studied in vitro. Through large-scale data mining, our study showed that BARX2 was differentially expressed between different normal and tumour tissues.BARX2 expression in LIHC tissues was significantly lower than that in corresponding controls, especially in patients with T2-4 stage disease. In patients with LIHC, overexpression of BARX2 was an independent poor prognostic factor associated with poor cytogenetic risk and gene mutations. Genomic hypermethylation of the BARX2 gene was associated with upregulated BARX2 expression and poor overall survival (OS) in LIHC. Functional enrichment analysis showed that BARX2 had an immunomodulatory role and was involved in the inflammatory response in LIHC occurrence. In conclusion, the oncogene BARX2 may serve as a new biomarker and prognostic factor for patients with LIHC. The immunomodulatory function of BARX2 deserves further validation in LIHC.
Collapse
Affiliation(s)
- Shian Yu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yu Yang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hanqing Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Long Peng
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Zhipeng Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Liang Sun
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Zhengyi Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xuzhe Yu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xiangbao Yin
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
3
|
Rodboon T, Yodmuang S, Chaisuparat R, Ferreira JN. Development of high-throughput lacrimal gland organoid platforms for drug discovery in dry eye disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:151-158. [PMID: 35058190 DOI: 10.1016/j.slasd.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dysfunction and damage of the lacrimal gland (LG) results in ocular discomfort and dry eye disease (DED). Current therapies for DED do not fully replenish the necessary lubrication to rescue optimal vision. New drug discovery for DED has been limited perhaps because in vitro models cannot mimic the biology of the native LG. The existing platforms for LG organoid culture are scarce and still not ready for consistency and scale up production towards drug screening. The magnetic three-dimensional (3D) bioprinting (M3DB) is a novel system for 3D in vitro biofabrication of cellularized tissues using magnetic nanoparticles to bring cells together. M3DB provides a scalable platform for consistent handling of spheroid-like cell cultures facilitating consistent biofabrication of organoids. Previously, we successfully generated innervated secretory epithelial organoids from human dental pulp stem cells with M3DB and found that this platform is feasible for epithelial organoid bioprinting. Research targeting LG organogenesis, drug discovery for DED has extensively used mouse models. However, certain inter-species differences between mouse and human must be considered. Porcine LG appear to have more similarities to human LG than the mouse counterparts. We have conducted preliminary studies with the M3DB for fabricating LG organoids from primary cells isolated from murine and porcine LG, and found that this platform provides robust LG organoids for future potential high-throughput analysis and drug discovery. The LG organoid holds promise to be a functional model of tearing, a platform for drug screening, and may offer clinical applications for DED.
Collapse
Affiliation(s)
- Teerapat Rodboon
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Risa Chaisuparat
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Joao N Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Ma J, Xia LL, Yao XQ, Zheng SM, Li S, Xu LS, Sha WH, Li ZS. BARX2 expression is downregulated by CpG island hypermethylation and is associated with suppressed cell proliferation and invasion of gastric cancer cells. Oncol Rep 2020; 43:1805-1818. [PMID: 32236603 PMCID: PMC7160541 DOI: 10.3892/or.2020.7558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
BarH-like homeobox 2 (BARX2), a homeobox gene, is associated with several types of cancers. The present study aimed to determine whether DNA methylation downregulates BARX2 expression and whether BARX2 is associated with suppression of gastric carcinogenesis. BARX2 protein expression in normal and cancerous gastric tissues and various gastric cancer (GC) cell lines was detected using immunohistochemical and western blot assays. BARX2 mRNA levels were detected using both reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (qPCR). Promoter hypermethylation in GC cells was detected using methylation-specific PCR or bisulfite DNA sequencing PCR. Effects of BARX2 expression on GC cell proliferation, clonal formation, and migration were evaluated after lentivirus-BARX2 transfection. The effect of stable BARX2 transfection on tumor formation was assessed in a nude xenograft mouse model. BARX2 was strongly expressed in the normal gastric mucosa, but weakly or not expressed in GC tissues and most GC cell lines. BARX2 expression was negatively correlated with DNMT (a marker for DNA methylation) expression in the gastric tissues. The BARX2 promoter fragment was hypermethylated in the GC cell lines. Overexpression of BARX2 significantly inhibited GC cell proliferation, clonal formation, and migration. Stable BARX2 transfection inhibited tumor formation in xenograft mice, which was correlated with decreased expression of E-cadherin, proliferation markers, and matrix metalloproteinases. In conclusion, BARX2 expression is aberrantly reduced in GC, which is associated with increased DNA methylation of its promoter. BARX2 inhibits GC cell proliferation, migration, and tumor formation, suggesting that BARX2 acts as a tumor suppressor in gastric carcinogenesis.
Collapse
Affiliation(s)
- Juan Ma
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ling-Ling Xia
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Xue-Qing Yao
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shi-Min Zheng
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Shi Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| | - Li-Shu Xu
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Wei-Hong Sha
- Department of Gastroenterology and Hepatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, and Guangdong Provincial Geriatrics Institute, Guangzhou, Guangdong 510080, P.R. China
| | - Ze-Song Li
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
5
|
Deregulated NKL Homeobox Genes in B-Cell Lymphoma. Cancers (Basel) 2019; 11:cancers11121874. [PMID: 31779217 PMCID: PMC6966443 DOI: 10.3390/cancers11121874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, we have described physiological expression patterns of NKL homeobox genes in early hematopoiesis and in subsequent lymphopoiesis. We identified nine genes which constitute the so-called NKL-code. Aberrant overexpression of code-members or ectopically activated non-code NKL homeobox genes are described in T-cell leukemia and in T- and B-cell lymphoma, highlighting their oncogenic role in lymphoid malignancies. Here, we introduce the NKL-code in normal hematopoiesis and focus on deregulated NKL homeobox genes in B-cell lymphoma, including HLX, MSX1 and NKX2-2 in Hodgkin lymphoma; HLX, NKX2-1 and NKX6-3 in diffuse large B-cell lymphoma; and NKX2-3 in splenic marginal zone lymphoma. Thus, the roles of various members of the NKL homeobox gene subclass are considered in normal and pathological hematopoiesis in detail.
Collapse
|
6
|
Up-regulation of miR-187 modulates the advances of oral carcinoma by targeting BARX2 tumor suppressor. Oncotarget 2018; 7:61355-61365. [PMID: 27542258 PMCID: PMC5308656 DOI: 10.18632/oncotarget.11349] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/09/2016] [Indexed: 12/31/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Aberrations in miRNA regulation are known to play important roles in OSCC pathogenesis. miR-187 was shown to be up-regulated in head and neck malignancies in our previous screening. This study further investigated the oncogenic potential, clinical implications, and targets of miR-187 in OSCC. We observed that miR-187 increased oncogenicity, particularly migration, of OSCC cells. miR-187 expression increased the xenografic tumorigenicity and metastasis in mice. In addition, metastatic human OSCC had higher miR-187 expression than did non-metastatic tumors. Through vigorous screening, we confirmed BarH-like Homeobox 2 (BARX2) gene as an miR-187 target. BARX2 expression suppressed the migration, invasion, anchorage-independent colony formation, and orthotopic tumorigenesis of OSCC cells. The migratory phenotype and neck metastasis induced by miR-187 was rescued by BARX2 expression. BARX2 expression was down-regulated in the vast majority of OSCC, and this down-regulation was particularly conspicuous in tumors with advanced nodal metastasis. In addition, plasma miR-187 was significantly higher in OSCC patients than in normal individuals. This study highlights the roles of miR-187-BARX2 in driving the carcinogenesis of OSCC. The results suggest that miR-187 is a potential serological marker for OSCC and that targeting of miR-187 might prove effective in attenuating nodal metastasis.
Collapse
|
7
|
Chen H, Zhang M, Zhang W, Li Y, Zhu J, Zhang X, Zhao L, Zhu S, Chen B. Downregulation of BarH-like homeobox 2 promotes cell proliferation, migration and aerobic glycolysis through Wnt/β-catenin signaling, and predicts a poor prognosis in non-small cell lung carcinoma. Thorac Cancer 2018; 9:390-399. [PMID: 29341468 PMCID: PMC5832481 DOI: 10.1111/1759-7714.12593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022] Open
Abstract
Background Human BarH‐like homeobox 2 (Barx2), a homeodomain factor of the Bar family, plays a critical role in cell adhesion and cytoskeleton remodeling, and has been reported in an increasing array of tumor types except non‐small cell lung carcinoma (NSCLC). The purpose of the current study was to characterize the expression of Barx2 and assess the clinical significance of Barx2 in NSCLC. Methods Quantitative real‐time polymerase chain reaction, immunohistochemistry and western blot analysis were used to examine mRNA and protein expression, respectively. The relationships between Barx2 expression and clinicopathological variables were analyzed. Cell Counting Kit‐8 and plate colony formation assay were used to detect cell proliferation. Transwell assay was used to examine cell migration ability. Glucose uptake, lactate, adenosine triphosphate, and lactate dehydrogenase assays were used to detect aerobic glycolysis. Results Barx2 is downregulated in NSCLC tissues compared with para‐carcinoma. Furthermore, Barx2 expression shows a negative correlation with advanced TNM stage and a high level of Ki‐67. Survival analysis reveals that Barx2 level is an independent prognostic factor for NSCLC patients. The Barx2 (low) Ki‐67 (high) group had the worst prognosis. Furthermore, the data indicate that downregulation of Barx2 expression promotes cell proliferation, migration, and aerobic glycolysis, including increased lactate dehydrogenase activity, glucose utilization, lactate production, and decreased intracellular adenosine triphospahte level. Furthermore, Barx2 acts as a negative regulator of the canonical Wnt/β‐catenin pathway. Reactivation of Wnt/β‐catenin pathway by LiCl can reverse the inhibiting effect of Barx2. Conclusions These findings reveal that Barx2 serving as a tumor suppressor gene could decrease cell proliferation, migration, and aerobic glycolysis through inhibiting the Wnt/β‐catenin signaling pathway, and predicts a good prognosis in NSCLC.
Collapse
Affiliation(s)
- Hao Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Maowei Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wenhui Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yuanqin Li
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jiechen Zhu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaojiao Zhang
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Li Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shuyang Zhu
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bi Chen
- Department of Respiratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|