1
|
Regulation of neuronal excitation-transcription coupling by Kv2.1-induced clustering of somatic L-type Ca 2+ channels at ER-PM junctions. Proc Natl Acad Sci U S A 2021; 118:2110094118. [PMID: 34750263 PMCID: PMC8609631 DOI: 10.1073/pnas.2110094118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
In hippocampal neurons, gene expression is triggered by electrical activity and Ca2+ entry via L-type Cav1.2 channels in a process called excitation–transcription coupling. We identified a domain on the voltage-gated K+ channel Kv2.1 that promotes the clustering of L-type Cav1.2 channels at endoplasmic reticulum–plasma membrane junctions in the soma of neurons. Importantly, we discovered by disrupting this domain that the Kv2.1-mediated clustering of Cav1.2 at this somatic microdomain is critical for depolarization-induced excitation–transcription coupling. In mammalian brain neurons, membrane depolarization leads to voltage-gated Ca2+ channel-mediated Ca2+ influx that triggers diverse cellular responses, including gene expression, in a process termed excitation–transcription coupling. Neuronal L-type Ca2+ channels, which have prominent populations on the soma and distal dendrites of hippocampal neurons, play a privileged role in excitation–transcription coupling. The voltage-gated K+ channel Kv2.1 organizes signaling complexes containing the L-type Ca2+ channel Cav1.2 at somatic endoplasmic reticulum–plasma membrane junctions. This leads to enhanced clustering of Cav1.2 channels, increasing their activity. However, the downstream consequences of the Kv2.1-mediated regulation of Cav1.2 localization and function on excitation–transcription coupling are not known. Here, we have identified a region between residues 478 to 486 of Kv2.1’s C terminus that mediates the Kv2.1-dependent clustering of Cav1.2. By disrupting this Ca2+ channel association domain with either mutations or with a cell-penetrating interfering peptide, we blocked the Kv2.1-mediated clustering of Cav1.2 at endoplasmic reticulum–plasma membrane junctions and the subsequent enhancement of its channel activity and somatic Ca2+ signals without affecting the clustering of Kv2.1. These interventions abolished the depolarization-induced and L-type Ca2+ channel-dependent phosphorylation of the transcription factor CREB and the subsequent expression of c-Fos in hippocampal neurons. Our findings support a model whereby the Kv2.1-Ca2+ channel association domain-mediated clustering of Cav1.2 channels imparts a mechanism to control somatic Ca2+ signals that couple neuronal excitation to gene expression.
Collapse
|
2
|
Meyer C, Kettner A, Hochenegg U, Rubi L, Hilber K, Koenig X, Boehm S, Hotka M, Kubista H. On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Ca v1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience 2021; 468:265-281. [PMID: 34015369 DOI: 10.1016/j.neuroscience.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca2+ elevations. Herein, a key element is the gating of L-type voltage gated Ca2+ channels (LTCCs, Cav1.x family), which may convey Ca2+ signals to the nucleus. Accordingly, the present study investigates various insult-associated neuronal challenges for their propensities to trigger PDS in a LTCC-dependent manner. Our data demonstrate that diverse disturbances of neuronal function are variably suited to induce PDS-like events, and the contribution of LTCCs is essential to evoke PDS in rat hippocampal neurons that closely resemble GDPs. These PDS appear to be initiated in the dendritic sub-compartment. Their morphology critically depends on the position of recording electrodes and on their rate of occurrence. These results provide novel insight into induction mechanisms, origin, variability, and co-existence of PDS with other discharge patterns and thereby pave the way for future investigations regarding the role of PDS in epileptogenesis.
Collapse
Affiliation(s)
- Christiane Meyer
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Annika Kettner
- University of Applied Sciences (FH Campus Wien), Favoritenstrasse 226, 1100 Vienna, Austria.
| | - Ulla Hochenegg
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Lena Rubi
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Xaver Koenig
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
4
|
Poston RG, Dunn CJ, Sarkar P, Saha RN. Persistent 6-OH-BDE-47 exposure impairs functional neuronal maturation and alters expression of neurodevelopmentally-relevant chromatin remodelers. ENVIRONMENTAL EPIGENETICS 2018; 4:dvx020. [PMID: 29765770 PMCID: PMC5941167 DOI: 10.1093/eep/dvx020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a pervasive class of brominated flame retardants that are present in the environment at particularly high levels, especially in the United States. Their environmental stability, propensity for bioaccumulation, and known potential for neurotoxicity has evoked interest regarding their effects on the developing nervous system. Exposure to PBDEs has been strongly associated with neurodevelopmental disorders. However, the details of their mechanistic roles in such disorders are incompletely understood. Here, we report the effects of one of the most prevalent congeners, BDE-47, and its hydroxylated metabolites on the maturation and function of embryonic rat cortical neurons. Prolonged exposure to 6OH-BDE-47 produces the strongest effects amongst the parent BDE-47 congener and its tested hydroxylated metabolites. These effects include: i) disruption of transcriptional responses to neuronal activity, ii) dysregulation of multiple genes associated with neurodevelopmental disorders, and intriguingly, iii) altered expression of several subunits of the developmentally-relevant BAF (Brg1-associated factors) chromatin remodeling complex, including the key subunit BAF170. Taken together, our data indicate that persistent exposure to 6OH-BDE-47 may interfere with neurodevelopmental chromatin remodeling mechanisms and gene transcription programs, which in turn are likely to interfere with downstream processes such as synapse development and overall functional maturity of neurons. Results from this study have identified a novel aspect of 6OH-BDE-47 toxicity and open new avenues to explore the effects of a ubiquitous environmental toxin on epigenetic regulation of neuronal maturation and function.
Collapse
Affiliation(s)
- Robert G Poston
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Carissa J Dunn
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Pushpita Sarkar
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Ramendra N Saha
- Molecular Cell Biology Unit, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
5
|
Activity-dependent synapse to nucleus signaling. Neurobiol Learn Mem 2017; 138:78-84. [DOI: 10.1016/j.nlm.2016.07.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 11/15/2022]
|
6
|
Choi KY, Yoo M, Han JH. Toward understanding the role of the neuron-specific BAF chromatin remodeling complex in memory formation. Exp Mol Med 2015; 47:e155. [PMID: 25838002 DOI: 10.1038/emm.2014.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/02/2014] [Indexed: 11/09/2022] Open
Abstract
The long-term storage of memory requires the finely tuned coordination of intracellular signaling with the transcriptional, translational and epigenetic regulations of gene expression. Among the epigenetic mechanisms, however, we know relatively little about the involvement of chromatin remodeling-dependent control of gene expression in cognitive brain functions, compared with our knowledge of other such mechanisms (for example, histone modifications and DNA methylation). A few recent studies have implicated the Brm/Brg-associated factor (BAF) chromatin-remodeling complex, a mammalian homolog of the yeast Swi/Snf complex, in neuronal structural/functional plasticity and memory formation. The BAF complex was previously known to have a critical role in neurodevelopment, but these recent findings indicate that it also contributes to both cognitive functions in the adult brain and human mental disorders characterized by intellectual disability. In this review, we provide a brief overview of the BAF complexes, introduce recent research findings that link their functions to memory formation, and speculate on the yet-unknown molecular mechanisms that may be relevant to these processes.
Collapse
Affiliation(s)
- Kwang-Yeon Choi
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Miran Yoo
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jin-Hee Han
- Department of Biological Sciences, KAIST Institute for the BioCentury (KIB), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
7
|
Cruz FC, Javier Rubio F, Hope BT. Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction. Brain Res 2014; 1628:157-73. [PMID: 25446457 DOI: 10.1016/j.brainres.2014.11.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/27/2014] [Accepted: 11/01/2014] [Indexed: 01/02/2023]
Abstract
Learned associations between drugs and environment play an important role in addiction and are thought to be encoded within specific patterns of sparsely distributed neurons called neuronal ensembles. This hypothesis is supported by correlational data from in vivo electrophysiology and cellular imaging studies in relapse models in rodents. In particular, cellular imaging with the immediate early gene c-fos and its protein product Fos has been used to identify sparsely distributed neurons that were strongly activated during conditioned drug behaviors such as drug self-administration and context- and cue-induced reinstatement of drug seeking. Here we review how Fos and the c-fos promoter have been employed to demonstrate causal roles for Fos-expressing neuronal ensembles in prefrontal cortex and nucleus accumbens in conditioned drug behaviors. This work has allowed identification of unique molecular and electrophysiological alterations within Fos-expressing neuronal ensembles that may contribute to the development and expression of learned associations in addiction.
Collapse
Affiliation(s)
- Fabio C Cruz
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - F Javier Rubio
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States
| | - Bruce T Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Suite 200, Baltimore, MD 21224, United States.
| |
Collapse
|
8
|
Chalmers I, Atkinson P, Fenton M, Firkins L, Crowe S, Cowan K. Tackling treatment uncertainties together: the evolution of the James Lind Initiative, 2003-2013. J R Soc Med 2013; 106:482-91. [PMID: 23824330 PMCID: PMC3842854 DOI: 10.1177/0141076813493063] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|