1
|
Chen W, Hou CH, Chen YL, Shen HH, Lin CH, Wu CY, Lin MH, Liao CC, Huang JJ, Yang CY, Li YC, Yip HK. Safety and efficacy of intracoronary artery administration of human bone marrow-derived mesenchymal stem cells in STEMI of Lee-Sung pigs—A preclinical study for supporting the feasibility of the OmniMSC-AMI phase I clinical trial. Front Cardiovasc Med 2023; 10:1153428. [PMID: 37063964 PMCID: PMC10091140 DOI: 10.3389/fcvm.2023.1153428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
BackgroundThis study tested whether early left intracoronary arterial (LAD) administration of human bone marrow-derived mesenchymal stem cells (hBMMSCs, called OmniMSCs) in acute ST-segment elevation myocardial infarction (STEMI) of Lee-Sung pigs induced by 90 min balloon-occluded LAD was safe and effective.Methods and resultsYoung male Lee-Sung pigs were categorized into SC (sham-operated control, n = 3), AMI-B (STEMI + buffer/21 cc/administered at 90 min after STEMI, n = 6), and AMI-M [acute myocardial infarction (AMI) + hBMMSCs/1.5 × 107/administered at 90 min after STEMI, n = 6] groups. By 2 and 5 months after STEMI, the cardiac magnetic resonance imaging demonstrated that the muscle scar score (MSS) and abnormal cardiac muscle exercise score in the infarct region were significantly increased in the AMI-B than in the SC group that were significantly reversed in the AMI-M group, whereas the left ventricular ejection function by each month (from 1 to 5) displayed an opposite pattern of MSS among the groups (all p < 0.001). By 5 months, histopathological findings of infarct and fibrosis areas and isolectin-B4 exhibited an identical pattern, whereas the cellular expressions of troponin-I/troponin-T/von Willebrand factor exhibited an opposite pattern of MSS among the groups (all p < 0.001). The ST-segment resolution (>80%) was significantly earlier (estimated after 6-h AMI) in the AMI-M group than in the AMI-B group (p < 0.001). The protein expressions of inflammation (IL-1β/TNF-α/NF-κB)/oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptosis (cleaved caspase-3/cleaved PARP)/DNA damage (γ-H2AX) displayed an identical pattern to MSS among the groups, whereas the protein expressions of angiogenesis factors (SDF-1α/VEGF) were significantly and progressively increased from SC, AMI-B, to AMI-M groups (all p < 0.001).ConclusionEarly intra-LAD transfusion of OmniMSC treatment effectively reduced the infarct size and preserved LV function in porcine STEMI.
Collapse
Affiliation(s)
- Wannhsin Chen
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chun-Hsiang Hou
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli, Taiwan
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsin-Hsin Shen
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chen-Hsuan Lin
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Cheng-Yi Wu
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Meng-Hsueh Lin
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chih-Ching Liao
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Jun-Jae Huang
- Regeneration Medicine Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Chi-Yu Yang
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli, Taiwan
| | - Yi-Chen Li
- Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Nursing, Asia University, Taichung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, China
| |
Collapse
|
2
|
Liu Y, Chen L, Gao L, Pei X, Tao Z, Xu Y, Li R. LRRK2 deficiency protects the heart against myocardial infarction injury in mice via the P53/HMGB1 pathway. Free Radic Biol Med 2022; 191:119-127. [PMID: 36055602 DOI: 10.1016/j.freeradbiomed.2022.08.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
LRRK2 is a Ser/Thr kinase with multiple functional domains. Studies have shown that LRRK2 mutations are closely related to hereditary Parkinson's disease. However, its role in cardiovascular disease, especially in myocardial infarction, is unclear. The aim of this study was to explore the functional role of LRRK2 in myocardial infarction. Wild-type and LRRK2-knockout mice were subjected to coronary artery ligation (left anterior descending) to establish a myocardial infarction model. Neonatal rat cardiomyocytes were subjected to hypoxia to induce hypoxic injury in vitro. We found increased LRRK2 expression levels in the infarct periphery in mouse hearts and hypoxic cardiomyocytes. LRRK2-deficient mice exhibited decreased death rates and reduced infarction areas compared to wild-type controls 14 days after infarction. LRRK2-deficient mice showed reduced left ventricular fibrosis and inflammatory responses, as well as improved cardiac function. In the in vitro study, LRRK2 silencing decreased cleaved caspase-3 activity, reduced cardiomyocyte apoptosis, and diminished hypoxia-induced inflammation. However, LRRK2 overexpression enhanced cleaved caspase-3 activity, increased the number of apoptotic cardiomyocytes, and caused remarkable hypoxia-induced inflammation. When examining the underlying mechanisms, we found that hypoxia increased HIFα expression, which enhanced LRRK2 expression. LRRK2 induced high expression of HMGB1 via P53. When HMGB1 was blocked using an anti-HMGB1 antibody, the deleterious effects caused by LRRK2 overexpression following hypoxia were inhibited in cardiomyocytes. In summary, LRRK2 deficiency protects the heart against myocardial infarction injury. The mechanism underlying this effect involves the P53-HMGB1 pathway.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lu Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaoxin Pei
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zekai Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yawei Xu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ran Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Correlates of Delayed Initial Contact to Emergency Services among Patients with Suspected ST-Elevation Myocardial Infarction. Cardiol Res Pract 2021; 2021:8483817. [PMID: 34567802 PMCID: PMC8457972 DOI: 10.1155/2021/8483817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background Early diagnosis and treatment of a patient displaying symptoms of myocardial ischemia is paramount in preventing detrimental tissue damage, arrhythmias, and death. Patient-related hospital delay is the greatest considerable cause of total delay in treatment for acute myocardial infarction. Objective To identify patient characteristics contributing to prehospital delay and ultimately developing health interventions to prevent future delay and improve health outcomes. Methods A retrospective chart review of 287 patients diagnosed with ST-elevation myocardial infarction (STEMI) was evaluated to examine correlates of patient-related delays to care. Results Stepwise logistic regression modeling with forward selection (likelihood ratio) was performed to identify predictors of first medical contact (FMC) within 120 minutes of symptom onset and door-to-balloon (DTB) time within 90 minutes. Distance from the hospital, being unmarried, self-medicating, disability, and hemodynamic stability emerged as variables that were found to be predictive of FMC within the first 120 minutes after symptom onset. Similarly, patient characteristics of gender and disability and having an initial nondiagnostic electrocardiogram emerged as significant predictors of DTB within 90 minutes. Conclusions Individual attention to high-risk patients and public education campaigns using printed materials, public lectures, and entertainment mediums are likely needed to disseminate information to improve prevention strategies. Future research should focus on identifying the strengths of prehospital predictors and finding other variables that can be established as forecasters of delay. Interventions to enhance survival in acute STEMI should continue as to provide substantial advances in overall health outcomes.
Collapse
|
4
|
Marsh SR, Williams ZJ, Pridham KJ, Gourdie RG. Peptidic Connexin43 Therapeutics in Cardiac Reparative Medicine. J Cardiovasc Dev Dis 2021; 8:52. [PMID: 34063001 PMCID: PMC8147937 DOI: 10.3390/jcdd8050052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Connexin (Cx43)-formed channels have been linked to cardiac arrhythmias and diseases of the heart associated with myocardial tissue loss and fibrosis. These pathologies include ischemic heart disease, ischemia-reperfusion injury, heart failure, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, and Duchenne muscular dystrophy. A number of Cx43 mimetic peptides have been reported as therapeutic candidates for targeting disease processes linked to Cx43, including some that have advanced to clinical testing in humans. These peptides include Cx43 sequences based on the extracellular loop domains (e.g., Gap26, Gap 27, and Peptide5), cytoplasmic-loop domain (Gap19 and L2), and cytoplasmic carboxyl-terminal domain (e.g., JM2, Cx43tat, CycliCX, and the alphaCT family of peptides) of this transmembrane protein. Additionally, RYYN peptides binding to the Cx43 carboxyl-terminus have been described. In this review, we survey preclinical and clinical data available on short mimetic peptides based on, or directly targeting, Cx43, with focus on their potential for treating heart disease. We also discuss problems that have caused reluctance within the pharmaceutical industry to translate peptidic therapeutics to the clinic, even when supporting preclinical data is strong. These issues include those associated with the administration, stability in vivo, and tissue penetration of peptide-based therapeutics. Finally, we discuss novel drug delivery technologies including nanoparticles, exosomes, and other nanovesicular carriers that could transform the clinical and commercial viability of Cx43-targeting peptides in treatment of heart disease, stroke, cancer, and other indications requiring oral or parenteral administration. Some of these newly emerging approaches to drug delivery may provide a path to overcoming pitfalls associated with the drugging of peptide therapeutics.
Collapse
Affiliation(s)
- Spencer R. Marsh
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Zachary J. Williams
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
| | - Kevin J. Pridham
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Robert G. Gourdie
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA 24016, USA; (S.R.M.); (Z.J.W.); (K.J.P.)
- Center for Heart and Reparative Medicine Research, Virginia Tech, Roanoke, VA 24016, USA
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Emergency Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA
| |
Collapse
|
5
|
Miao Y, Ding Z, Zou Z, Yang Y, Yang M, Zhang X, Li Z, Zhou L, Zhang L, Zhang X, Du D, Jiang F, Zhou P. Inhibition of MyD88 by a novel inhibitor reverses two-thirds of the infarct area in myocardial ischemia and reperfusion injury. Am J Transl Res 2020; 12:5151-5169. [PMID: 33042411 PMCID: PMC7540094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Cardiomyocytes, macrophages, and fibroblasts play important roles in inflammation and repair during myocardial ischemia/reperfusion injury (MIRI). Myeloid differentiation primary response 88 (MyD88) is upregulated in immunocytes, cardiomyocytes, and fibroblasts during MIRI. MyD88 induces the secretion of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α), while fibroblasts are recruited and activated to mediate cardiac remodeling. The aim of this study was to assess the anti-MIRI effect and mode of action of the novel MyD88 inhibitor TJ-M2010-5. We synthesized TJ-M2010-5 and identified its target by co-immunoprecipitation, after which we established a murine MIRI model and tested the protective effect of TJ-M2010-5 by immunohistochemistry, flow cytometry, real-time PCR, and western blotting. Neonatal rat cardiomyocytes subjected to anoxia/reoxygenation were also isolated and their supernatants used to stimulate cardiac macrophagocytes and fibroblasts in vitro. MyD88 was found upregulated during the early and late phases after MIRI. The MyD88 inhibitor considerably improved cardiac function, reduced cardiomyocyte apoptosis, reduced IL-1β, IL-6, and TNF-α secretion, and inhibited CD80+CD86+MHCII+ macrophage and fibroblast migration. Moreover, TJ-M2010-5 markedly inhibited Toll-like receptor/MyD88 signaling in vivo and in vitro. Thus, our findings highlight TJ-M2010-5 as a potential therapeutic agent for MIRI treatment.
Collapse
Affiliation(s)
- Yan Miao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Zuochuan Ding
- Department of General Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang, China
| | - Zhimiao Zou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Yang Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Min Yang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Zeyang Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Liang Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Limin Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Xue Zhang
- Department of Breast Surgery, Renmin Hospital of Wuhan University, Wuhan UniversityWuhan, China
| | - Dunfeng Du
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| | - Fengchao Jiang
- Academy of Pharmacy, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Ping Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical SciencesWuhan, China
| |
Collapse
|
6
|
Zhou YL, Sun Q, Zhang L, Li R. miR-208b targets Bax to protect H9c2 cells against hypoxia-induced apoptosis. Biomed Pharmacother 2018; 106:1751-1759. [PMID: 30119250 DOI: 10.1016/j.biopha.2018.07.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND miR-208 family members have been considered as promising biomarkers in myocardial infarction (MI). Among which, miR-208a and miR-499 are reported to function as ischemic injury promoting miRNAs. This study aimed to explore the in vitro function of miR-208b in MI, which has not been widely studied. METHODS RT-qPCR was conducted to measure the expression changes of miR-208b in MI patients, MI mouse model and H9c2 cells stimulated by hypoxia. H9c2 cells were subjected to hypoxia before which miR-208b expression was altered by transfection. CCK-8, flow cytometry and Western blot were performed to detect cell survival. Besides, the regulatory relationship between miR-208b, Bax, and PI3K/AKT was tested by luciferase reporter, RT-qPCR and Western blot. RESULTS Serum levels of miR-208b in MI patients were significantly higher than those in the healthy controls. Also, miR-208b was up-regulated in mouse model and cell model of MI. Overexpression of miR-208b protected H9c2 cells against hypoxia-induced apoptosis, as the viability was increased, apoptosis rate was decreased, Bax and Cytochrome c were down-regulated, and Bcl-2 was up-regulated. Bax was a target gene of miR-208b. And miR-208b could not protect H9c2 cells when Bax was overexpressed. More interestingly, miR-208b activated PI3K/AKT pathway via targeting Bax, and the activated PI3K/AKT pathway could further repress Bax expression. Finally, blocking PI3K/AKT pathway by using LY294002 eliminated the myocardioprotective effects of miR-208b. CONCLUSION miR-208b is highly expressed during MI, and miR-208b protects H9c2 cells against hypoxia-induced apoptosis. miR-208b exerts myocardioprotective effect via targeting Bax and activating PI3K/AKT pathway.
Collapse
Affiliation(s)
- Ya-Li Zhou
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Sun
- Department of Ultrasound, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Lei Zhang
- Department of Ultrasound, The Affiliated Hospital of Jining Medical College, Jining, China
| | - Rui Li
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Li T, Su Y, Yu X, Mouniir DSA, Masau JF, Wei X, Yang J. Trop2 Guarantees Cardioprotective Effects of Cortical Bone-Derived Stem Cells on Myocardial Ischemia/Reperfusion Injury. Cell Transplant 2018; 27:1256-1268. [PMID: 30008230 PMCID: PMC6434467 DOI: 10.1177/0963689718786882] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stem cell transplantation represents a promising therapeutic approach for myocardial ischemia/reperfusion (I/R) injury, where cortical bone-derived stem cells (CBSCs) stand out and hold superior cardioprotective effects on myocardial infarction than other types of stem cells. However, the molecular mechanism underlying CBSCs function on myocardial I/R injury is poorly understood. In a previous study, we reported that Trop2 (trophoblast cell-surface antigen 2) is expressed exclusively on the CBSCs membrane, and is involved in regulation of proliferation and differentiation of CBSCs. In this study, we found that the Trop2 is essential for the ameliorative effects of CBSCs on myocardial I/R-induced heart damage via promoting angiogenesis and inhibiting cardiomyocytes apoptosis in a paracrine manner. Trop2 is required for the colonization of CBSCs in recipient hearts. When Trop2 was knocked out, CBSCs largely lost their functions in lowering myocardial infarction size, improving heart function, enhancing capillary density, and suppressing myocardial cell death. Mechanistically, activating the AKT/GSK3β/β-Catenin signaling axis contributes to the essential role of Trop2 in CBSCs-rendered cardioprotective effects on myocardial I/R injury. In conclusion, maintaining the expression and/or activation of Trop2 in CBSCs might be a promising strategy for treating myocardial infarction, I/R injury, and other related heart diseases.
Collapse
Affiliation(s)
- Tianyu Li
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,2 Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunshu Su
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiongli Yu
- 3 Division of Biliary-Pancreatic Surgery and Endoscopy Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Durgahee S A Mouniir
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jackson Ferdinand Masau
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Wei
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianye Yang
- 1 Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|