1
|
Brogna C, Piscopo M. Reply to the letter of Thiruchelvam K. et al. J Med Virol 2024; 96:e29885. [PMID: 39185666 DOI: 10.1002/jmv.29885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Carlo Brogna
- Craniomed group Srl. Research facility, Bresso (Mi), Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Brogna C, Bisaccia DR, Costanzo V, Lettieri G, Montano L, Viduto V, Fabrowski M, Cristoni S, Prisco M, Piscopo M. Who Is the Intermediate Host of RNA Viruses? A Study Focusing on SARS-CoV-2 and Poliovirus. Microorganisms 2024; 12:643. [PMID: 38674588 PMCID: PMC11051822 DOI: 10.3390/microorganisms12040643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic has sparked a surge in research on microbiology and virology, shedding light on overlooked aspects such as the infection of bacteria by RNA virions in the animal microbiome. Studies reveal a decrease in beneficial gut bacteria during COVID-19, indicating a significant interaction between SARS-CoV-2 and the human microbiome. However, determining the origins of the virus remains complex, with observed phenomena such as species jumps adding layers to the narrative. Prokaryotic cells play a crucial role in the disease's pathogenesis and transmission. Analyzing previous studies highlights intricate interactions from clinical manifestations to the use of the nitrogen isotope test. Drawing parallels with the history of the Poliovirus underscores the need to prioritize investigations into prokaryotic cells hosting RNA viruses.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy;
| | | | - Vincenzo Costanzo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council, 00185 Rome, Italy;
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
| | - Mark Fabrowski
- Long COVID-19 Foundation, Brookfield Court, Leeds LS25 1NB, UK; (V.V.)
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
- British Polio Fellowship, Watford WD25 8HR, UK
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (M.P.)
| |
Collapse
|
3
|
Brogna C, Costanzo V, Brogna B, Bisaccia DR, Brogna G, Giuliano M, Montano L, Viduto V, Cristoni S, Fabrowski M, Piscopo M. Analysis of Bacteriophage Behavior of a Human RNA Virus, SARS-CoV-2, through the Integrated Approach of Immunofluorescence Microscopy, Proteomics and D-Amino Acid Quantification. Int J Mol Sci 2023; 24:3929. [PMID: 36835341 PMCID: PMC9965620 DOI: 10.3390/ijms24043929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
SARS-CoV-2, one of the human RNA viruses, is widely studied around the world. Significant efforts have been made to understand its molecular mechanisms of action and how it interacts with epithelial cells and the human microbiome since it has also been observed in gut microbiome bacteria. Many studies emphasize the importance of surface immunity and also that the mucosal system is critical in the interaction of the pathogen with the cells of the oral, nasal, pharyngeal, and intestinal epithelium. Recent studies have shown how bacteria in the human gut microbiome produce toxins capable of altering the classical mechanisms of interaction of viruses with surface cells. This paper presents a simple approach to highlight the initial behavior of a novel pathogen, SARS-CoV-2, on the human microbiome. The immunofluorescence microscopy technique can be combined with spectral counting performed at mass spectrometry of viral peptides in bacterial cultures, along with identification of the presence of D-amino acids within viral peptides in bacterial cultures and in patients' blood. This approach makes it possible to establish the possible expression or increase of viral RNA viruses in general and SARS-CoV-2, as discussed in this study, and to determine whether or not the microbiome is involved in the pathogenetic mechanisms of the viruses. This novel combined approach can provide information more rapidly, avoiding the biases of virological diagnosis and identifying whether a virus can interact with, bind to, and infect bacteria and epithelial cells. Understanding whether some viruses have bacteriophagic behavior allows vaccine therapies to be focused either toward certain toxins produced by bacteria in the microbiome or toward finding inert or symbiotic viral mutations with the human microbiome. This new knowledge opens a scenario on a possible future vaccine: the probiotics vaccine, engineered with the right resistance to viruses that attach to both the epithelium human surface and gut microbiome bacteria.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Molecular Biology and Genetics, 83031 Ariano Irpino, Italy
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
| | | | - Giancarlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | - Marino Giuliano
- Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy
| | - Valentina Viduto
- Long COVID-19 Foundation, Brookfield Court, Garforth, Leeds LS25 1NB, UK
| | | | - Mark Fabrowski
- Department of Emergency Medicine, Royal Sussex County Hospital, University Hospitals Sussex, Eastern Road, Brighton BN2 5BE, UK
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
4
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
5
|
Clerbaux LA, Mayasich SA, Muñoz A, Soares H, Petrillo M, Albertini MC, Lanthier N, Grenga L, Amorim MJ. Gut as an Alternative Entry Route for SARS-CoV-2: Current Evidence and Uncertainties of Productive Enteric Infection in COVID-19. J Clin Med 2022; 11:5691. [PMID: 36233559 PMCID: PMC9573230 DOI: 10.3390/jcm11195691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
The gut has been proposed as a potential alternative entry route for SARS-CoV-2. This was mainly based on the high levels of SARS-CoV-2 receptor expressed in the gastrointestinal (GI) tract, the observations of GI disorders (such as diarrhea) in some COVID-19 patients and the detection of SARS-CoV-2 RNA in feces. However, the underlying mechanisms remain poorly understood. It has been proposed that SARS-CoV-2 can productively infect enterocytes, damaging the intestinal barrier and contributing to inflammatory response, which might lead to GI manifestations, including diarrhea. Here, we report a methodological approach to assess the evidence supporting the sequence of events driving SARS-CoV-2 enteric infection up to gut adverse outcomes. Exploring evidence permits to highlight knowledge gaps and current inconsistencies in the literature and to guide further research. Based on the current insights on SARS-CoV-2 intestinal infection and transmission, we then discuss the potential implication on clinical practice, including on long COVID. A better understanding of the GI implication in COVID-19 is still needed to improve disease management and could help identify innovative therapies or preventive actions targeting the GI tract.
Collapse
Affiliation(s)
| | - Sally A. Mayasich
- University of Wisconsin-Madison Aquatic Sciences Center at US EPA, Duluth, MN 55804, USA
| | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | - Helena Soares
- Laboratory of Human Immunobiology and Pathogenesis, iNOVA4Health, Faculdade de Ciências Médicas—Nova Medical School, Universidade Nova de Lisboa, 1099-085 Lisbon, Portugal
| | | | | | - Nicolas Lanthier
- Laboratory of Hepatogastroenterology, Service d’Hépato-Gastroentérologie, Cliniques Universitaires Saint-Luc, UCLouvain, 1200 Brussels, Belgium
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 91190 Paris, France
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Lisbon, Portugal
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| |
Collapse
|
6
|
Clerbaux LA, Fillipovska J, Muñoz A, Petrillo M, Coecke S, Amorim MJ, Grenga L. Mechanisms Leading to Gut Dysbiosis in COVID-19: Current Evidence and Uncertainties Based on Adverse Outcome Pathways. J Clin Med 2022; 11:5400. [PMID: 36143044 PMCID: PMC9505288 DOI: 10.3390/jcm11185400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Alteration in gut microbiota has been associated with COVID-19. However, the underlying mechanisms remain poorly understood. Here, we outlined three potential interconnected mechanistic pathways leading to gut dysbiosis as an adverse outcome following SARS-CoV-2 presence in the gastrointestinal tract. Evidence from the literature and current uncertainties are reported for each step of the different pathways. One pathway investigates evidence that intestinal infection by SARS-CoV-2 inducing intestinal inflammation alters the gut microbiota. Another pathway links the binding of viral S protein to angiotensin-converting enzyme 2 (ACE2) to the dysregulation of this receptor, essential in intestinal homeostasis-notably for amino acid metabolism-leading to gut dysbiosis. Additionally, SARS-CoV-2 could induce gut dysbiosis by infecting intestinal bacteria. Assessing current evidence within the Adverse Outcome Pathway framework justifies confidence in the proposed mechanisms to support disease management and permits the identification of inconsistencies and knowledge gaps to orient further research.
Collapse
Affiliation(s)
| | | | - Amalia Muñoz
- European Commission, Joint Research Centre (JRC), 2440 Geel, Belgium
| | | | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Maria-Joao Amorim
- Instituto Gulbenkian de Ciência, 2780-156 Oerias, Portugal
- Católica Medical School, Católica Biomedical Research Centre, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | - Lucia Grenga
- Département Médicaments et Technologies pour la Santé, Commissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Paris-Saclay, 30200 Bagnols-sur-Cèze, France
| |
Collapse
|
7
|
Brogna C, Brogna B, Bisaccia DR, Giuliano M, Montano L, Cristoni S, Petrillo M, Piscopo M. SARS-CoV-2: Reinfection after 18 Months of a Previous Case with Multiple Negative Nasopharyngeal Swab Tests and Positive Fecal Molecular Test. Medicina (B Aires) 2022; 58:medicina58050642. [PMID: 35630059 PMCID: PMC9148128 DOI: 10.3390/medicina58050642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
This short communication describes the reinfection after nearly 18 months of the same patient who was previously infected with coronavirus disease 2019 (COVID-19) and who showed multiple negative real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results by nasal swabs for severe acute respiratory syndrome coronavirus (SARS-CoV-2) but positive results on a fecal sample. We previously noted how, in the presence of symptoms suggestive of pneumonia, visible on a chest computed tomography (CT) scan and confirmed by fecal molecular testing, it was possible to draw the diagnosis of SARS-CoV-2 infection. One year later, the same patient was again affected by SARS-CoV-2. This time, the first antigenic nasal swab showed readily positive results. However, the patient’s clinical course appeared to be more attenuated, showing no signs of pulmonary involvement in the radiographic examinations performed. This case shows a novelty in the pulmonary radiological evaluation of new SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility SRL, 83038 Montemiletto, Italy;
- Correspondence: (C.B.); (B.B.)
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
- Correspondence: (C.B.); (B.B.)
| | | | - Marino Giuliano
- Marsanconsulting Srl Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy;
| | - Luigi Montano
- Andrology Unit and Service of LifeStyle Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy;
| |
Collapse
|
8
|
Brogna C, Brogna B, Bisaccia DR, Lauritano F, Marino G, Montano L, Cristoni S, Prisco M, Piscopo M. Could SARS-CoV-2 Have Bacteriophage Behavior or Induce the Activity of Other Bacteriophages? Vaccines (Basel) 2022; 10:vaccines10050708. [PMID: 35632464 PMCID: PMC9143435 DOI: 10.3390/vaccines10050708] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 has become one of the most studied viruses of the last century. It was assumed that the only possible host for these types of viruses was mammalian eukaryotic cells. Our recent studies show that microorganisms in the human gastrointestinal tract affect the severity of COVID-19 and for the first time provide indications that the virus might replicate in gut bacteria. In order to further support these findings, in the present work, cultures of bacteria from the human microbiome and SARS-CoV-2 were analyzed by electron and fluorescence microscopy. The images presented in this article, in association with the nitrogen (15N) isotope-labeled culture medium experiment, suggest that SARS-CoV-2 could also infect bacteria in the gut microbiota, indicating that SARS-CoV-2 could act as a bacteriophage. Our results add new knowledge to the understanding of the mechanisms of SARS-CoV-2 infection and fill gaps in the study of the interactions between SARS-CoV-2 and non-mammalian cells. These findings could be useful in suggesting specific new pharmacological solutions to support the vaccination campaign.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
- Correspondence: (C.B.); (M.P.)
| | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy;
| | - Domenico Rocco Bisaccia
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
| | - Francesco Lauritano
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy; (D.R.B.); (F.L.)
| | - Giuliano Marino
- Marsan Consulting Srl., Public Health Company, Via dei Fiorentini, 80133 Naples, Italy;
| | - Luigi Montano
- Andrology Unit and Service of Life Style Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy;
| | | | - Marina Prisco
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
- Correspondence: (C.B.); (M.P.)
| |
Collapse
|