1
|
Thymol Disrupts Cell Homeostasis and Inhibits the Growth of Staphylococcus aureus. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8743096. [PMID: 36034206 PMCID: PMC9392601 DOI: 10.1155/2022/8743096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
Staphylococcus aureus (S. aureus) is a typical kind of symbiotic bacteria, which can cause human pneumonia, food poisoning, and other health problems. Nowadays, the corresponding prevention and treatment have been a hot issue of general concern in related research areas. However, the mechanism of action against S. aureus is not well understood. In order to tackle such problem, we used broth microdilution to discuss the antibacterial effect of 5-methyl-2-isopropylphenol and determine inhibitory concentration. In addition, membrane potential and lipid peroxidation levels were also measured under experimental conditions. The experimental results suggested that 300 μg/mL thymol might cause cell membrane damage and decrease of NADPH concentration and increase of NADP+ and lipid peroxidation level. In such condition, thymol has the potential to result in membrane rupture and disruption of cellular homeostasis. Furthermore, we also found that NOX2 is involved in maintaining the balance of NADPH/NADP+ in cells. Finally, our work confirms that NOX2 is a potential downstream target for thymol in the cell. Such target can provide specific guidance and recommendations for its application in antifungal activity. Meanwhile, our study also provides a new inspiration for the molecular mechanism of thymol's bacteriostatic action.
Collapse
|
2
|
Guak H, Krawczyk CM. Implications of cellular metabolism for immune cell migration. Immunology 2020; 161:200-208. [PMID: 32920838 DOI: 10.1111/imm.13260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cell migration is an essential, energetically demanding process in immunity. Immune cells navigate the body via chemokines and other immune mediators, which are altered under inflammatory conditions of injury or infection. Several factors determine the migratory abilities of different types of immune cells in diverse contexts, including the precise co-ordination of cytoskeletal remodelling, the expression of specific chemokine receptors and integrins, and environmental conditions. In this review, we present an overview of recent advances in our understanding of the relationship of each of these factors with cellular metabolism, with a focus on the spatial organization of glycolysis and mitochondria, reciprocal regulation of chemokine receptors and the influence of environmental changes.
Collapse
Affiliation(s)
- Hannah Guak
- Department of Physiology, McGill University, Montreal, QC, Canada.,Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| | - Connie M Krawczyk
- Metabolic and Nutritional Programming Group, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
3
|
Rocha RO, Wilson RA. Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression. Mol Microbiol 2020; 114:789-807. [PMID: 32936940 DOI: 10.1111/mmi.14580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/25/2022]
Abstract
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst-the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+ , accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.
Collapse
Affiliation(s)
- Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
4
|
Imoto Y, Itoh K, Fujiki Y. Molecular Basis of Mitochondrial and Peroxisomal Division Machineries. Int J Mol Sci 2020; 21:E5452. [PMID: 32751702 PMCID: PMC7432047 DOI: 10.3390/ijms21155452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles that are highly dynamic and possess a high degree of plasticity. These organelles proliferate through division of pre-existing organelles. Studies on yeast, mammalian cells, and unicellular algae have led to a surprising finding that mitochondria and peroxisomes share the components of their division machineries. At the heart of the mitochondrial and peroxisomal division machineries is a GTPase dynamin-like protein, Dnm1/Drp1, which forms a contractile ring around the neck of the dividing organelles. During division, Dnm1/Drp1 functions as a motor protein and constricts the membrane. This mechanochemical work is achieved by utilizing energy from GTP hydrolysis. Over the last two decades, studies have focused on the structure and assembly of Dnm1/Drp1 molecules around the neck. However, the regulation of GTP during the division of mitochondrion and peroxisome is not well understood. Here, we review the current understanding of Dnm1/Drp1-mediated divisions of mitochondria and peroxisomes, exploring the mechanisms of GTP regulation during the Dnm1/Drp1 function, and provide new perspectives on their potential contribution to mitochondrial and peroxisomal biogenesis.
Collapse
Grants
- 14J04556 Japan Society for the Promotion of Science Fellowships
- P24247038, JP25112518, JP25116717, JP26116007, JP15K14511, JP15K21743, JP17H03675 Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Institute of Rheological Functions of Food, Hisayama-cho, Fukuoka 811-2501, Japan
| |
Collapse
|
5
|
Optimization of nucleotide sugar supply for polysaccharide formation via thermodynamic buffering. Biochem J 2020; 477:341-356. [PMID: 31967651 DOI: 10.1042/bcj20190807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Plant polysaccharides (cellulose, hemicellulose, pectin, starch) are either direct (i.e. leaf starch) or indirect products of photosynthesis, and they belong to the most abundant organic compounds in nature. Although each of these polymers is made by a specific enzymatic machinery, frequently in different cell locations, details of their synthesis share certain common features. Thus, the production of these polysaccharides is preceded by the formation of nucleotide sugars catalyzed by fully reversible reactions of various enzymes, mostly pyrophosphorylases. These 'buffering' enzymes are, generally, quite active and operate close to equilibrium. The nucleotide sugars are then used as substrates for irreversible reactions of various polysaccharide-synthesizing glycosyltransferases ('engine' enzymes), e.g. plastidial starch synthases, or plasma membrane-bound cellulose synthase and callose synthase, or ER/Golgi-located variety of glycosyltransferases forming hemicellulose and pectin backbones. Alternatively, the irreversible step might also be provided by a carrier transporting a given immediate precursor across a membrane. Here, we argue that local equilibria, established within metabolic pathways and cycles resulting in polysaccharide production, bring stability to the system via the arrangement of a flexible supply of nucleotide sugars. This metabolic system is itself under control of adenylate kinase and nucleoside-diphosphate kinase, which determine the availability of nucleotides (adenylates, uridylates, guanylates and cytidylates) and Mg2+, the latter serving as a feedback signal from the nucleotide metabolome. Under these conditions, the supply of nucleotide sugars to engine enzymes is stable and constant, and the metabolic process becomes optimized in its load and consumption, making the system steady and self-regulated.
Collapse
|
6
|
Ma S, Kim A, Lee W, Kim S, Lee S, Yoon D, Bae JS, Park CI, Kim S. Vibrio harveyi Infection Significantly Alters Amino Acid and Carbohydrate Metabolism in Whiteleg Shrimp, Litopenaeus vannamei. Metabolites 2020; 10:metabo10060265. [PMID: 32630518 PMCID: PMC7344672 DOI: 10.3390/metabo10060265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Vibrio harveyi is one of the pathogens that threaten the shrimp farming industry. However, metabolic changes induced by V. harveyi infection in shrimp remain unknown. In this study, we first conducted high resolution-magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR)-based metabolomics studies on gill, hepatopancreas, and haemolymph of V. harveyi-infected white leg shrimp, Litopenaeus vannamei. Using multivariate statistical analysis, we observed a clear separation between the early (3 and 9 h post-injection (hpi)) and late phases (24, 72 and 144 hpi) of the infection in all tissues. Moreover, metabolic changes in response to V. harveyi infection were faster in the haemolymph in the early phase and significantly changed in the late phase of the infection in the gills. Extensive changes were observed in the hepatopancreas, with 24 hpi being the turning point of progression from early to late phase infection in the hepatopancreas. V. harveyi infection increased the energy demand in L. vannamei and the amino acid and carbohydrate metabolism pathways also exhibited significant changes depending on the tissue. Thus, each tissue displayed different metabolic changes, depending on the progress of the infection.
Collapse
Affiliation(s)
- Seohee Ma
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
| | - Ahran Kim
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
| | - Wonho Lee
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
| | - Seonghye Kim
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
| | - Sujin Lee
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
| | - Dahye Yoon
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural development administration (RDA), Eumseong 27709, Korea
| | - Jin-Sol Bae
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea; (J.-S.B.); (C.-I.P.)
- National Fishery Products Quality Management Service (NFQS), 337, Haeyang-ro, Yeongdo-gu, Busan 49111, Korea
| | - Chan-Il Park
- Department of Marine Biology and Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong 53064, Korea; (J.-S.B.); (C.-I.P.)
| | - Suhkmann Kim
- Department of Chemistry, Center for Proteome Biophysics, and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (S.M.); (A.K.); (W.L.); (S.K.); (S.L.); (D.Y.)
- Correspondence: ; Tel.: +82-51-510-2240
| |
Collapse
|
7
|
Dautant A, Henri J, Wales TE, Meyer P, Engen JR, Georgescauld F. Remodeling of the Binding Site of Nucleoside Diphosphate Kinase Revealed by X-ray Structure and H/D Exchange. Biochemistry 2019; 58:1440-1449. [PMID: 30785730 DOI: 10.1021/acs.biochem.8b01308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To be fully active and participate in the metabolism of phosphorylated nucleotides, most nucleoside diphosphate kinases (NDPKs) have to assemble into stable hexamers. Here we studied the role played by six intersubunit salt bridges R80-D93 in the stability of NDPK from the pathogen Mycobacterium tuberculosis ( Mt). Mutating R80 into Ala or Asn abolished the salt bridges. Unexpectedly, compensatory stabilizing mechanisms appeared for R80A and R80N mutants and we studied them by biochemical and structural methods. The R80A mutant crystallized into space group I222 that is unusual for NDPK, and its hexameric structure revealed the occurrence at the trimer interface of a stabilizing hydrophobic patch around the mutation. Functionally relevant, a trimer of the R80A hexamer showed a remodeling of the binding site. In this conformation, the cleft of the active site is more open, and then active His117 is more accessible to substrates. H/D exchange mass spectrometry analysis of the wild type and the R80A and R80N mutants showed that the remodeled region of the protein is highly solvent accessible, indicating that equilibrium between open and closed conformations is possible. We propose that such equilibrium occurs in vivo and explains how bulky substrates access the catalytic His117.
Collapse
Affiliation(s)
- Alain Dautant
- Université de Bordeaux , CNRS, Institut de Biochimie et Génétique Cellulaires, UMR5095 , 146 rue Léo Saignat , 33077 Bordeaux , France
| | - Julien Henri
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Philippe Meyer
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - John R Engen
- Department of Chemistry and Chemical Biology , Northeastern University , Boston , Massachusetts 02115 , United States
| | - Florian Georgescauld
- Sorbonne Universités , UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
8
|
Kelley LC, Chi Q, Cáceres R, Hastie E, Schindler AJ, Jiang Y, Matus DQ, Plastino J, Sherwood DR. Adaptive F-Actin Polymerization and Localized ATP Production Drive Basement Membrane Invasion in the Absence of MMPs. Dev Cell 2019; 48:313-328.e8. [PMID: 30686527 PMCID: PMC6372315 DOI: 10.1016/j.devcel.2018.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are associated with decreased patient prognosis but have failed as anti-invasive drug targets despite promoting cancer cell invasion. Through time-lapse imaging, optical highlighting, and combined genetic removal of the five MMPs expressed during anchor cell (AC) invasion in C. elegans, we find that MMPs hasten invasion by degrading basement membrane (BM). Though irregular and delayed, AC invasion persists in MMP- animals via adaptive enrichment of the Arp2/3 complex at the invasive cell membrane, which drives formation of an F-actin-rich protrusion that physically breaches and displaces BM. Using a large-scale RNAi synergistic screen and a genetically encoded ATP FRET sensor, we discover that mitochondria enrich within the protrusion and provide localized ATP that fuels F-actin network growth. Thus, without MMPs, an invasive cell can alter its BM-breaching tactics, suggesting that targeting adaptive mechanisms will be necessary to mitigate BM invasion in human pathologies.
Collapse
Affiliation(s)
- Laura C Kelley
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rodrigo Cáceres
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France; Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
| | - Eric Hastie
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Adam J Schindler
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - Yue Jiang
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Julie Plastino
- CNRS, Laboratoire Physico Chimie Curie, Institut Curie, PSL Research Université, Paris 75005, France; Sorbonne Université, Paris 75005, France
| | - David R Sherwood
- Department of Biology, Regeneration Next, Duke University, Box 90338, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Abstract
Isoforms of creatine kinase (CK) generate and use phosphocreatine, a concentrated and highly diffusible cellular "high energy" intermediate, for the main purpose of energy buffering and transfer in order to maintain cellular energy homeostasis. The mitochondrial CK isoform (mtCK) localizes to the mitochondrial intermembrane and cristae space, where it assembles into peripherally membrane-bound, large cuboidal homooctamers. These are part of proteolipid complexes wherein mtCK directly interacts with cardiolipin and other anionic phospholipids, as well as with the VDAC channel in the outer membrane. This leads to a stabilization and cross-linking of inner and outer mitochondrial membrane, forming so-called contact sites. Also the adenine nucleotide translocator of the inner membrane can be recruited into these proteolipid complexes, probably mediated by cardiolipin. The complexes have functions mainly in energy transfer to the cytosol and stimulation of oxidative phosphorylation, but also in restraining formation of reactive oxygen species and apoptosis. In vitro evidence indicates a putative role of mtCK in mitochondrial phospholipid distribution, and most recently a role in thermogenesis has been proposed. This review summarizes the essential structural and functional data of these mtCK complexes and describes in more detail the more recent advances in phospholipid interaction, thermogenesis, cancer and evolution of mtCK.
Collapse
|
10
|
Lacombe ML, Tokarska-Schlattner M, Boissan M, Schlattner U. The mitochondrial nucleoside diphosphate kinase (NDPK-D/NME4), a moonlighting protein for cell homeostasis. J Transl Med 2018; 98:582-588. [PMID: 29491425 DOI: 10.1038/s41374-017-0004-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial nucleoside diphosphate kinase (NDPK-D; synonyms: NME4, NM23-H4) represents the major mitochondrial NDP kinase. The homohexameric complex emerged as a protein with multiple functions in bioenergetics and phospholipid signaling. It occurs at different but precise mitochondrial locations and can affect among other mitochondrial shapes and dynamics, as well as the specific elimination of defective mitochondria or cells via mitophagy or apoptosis. With these various functions in cell homeostasis, NDPK-D/NME4 adds to the group of so-called moonlighting (or gene sharing) proteins.
Collapse
Affiliation(s)
- Marie-Lise Lacombe
- Sorbonne Université, UPMC Univ Paris 06, Paris, France. .,INSERM UMR-S 938, Saint-Antoine Research Center, Paris, France.
| | - Malgorzata Tokarska-Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm U1055, Grenoble, France
| | - Mathieu Boissan
- Sorbonne Université, UPMC Univ Paris 06, Paris, France.,INSERM UMR-S 938, Saint-Antoine Research Center, Paris, France.,AP-HP, Hôpital Tenon, Service de Biochimie et Hormonologie, Paris, 75020, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), University Grenoble Alpes, Grenoble, France.,Inserm U1055, Grenoble, France
| |
Collapse
|
11
|
Abstract
Nucleoside diphosphate kinases (NDPK) are nucleotide metabolism enzymes encoded by NME genes (also called NM23). Given the fact that not all NME-encoded proteins are catalytically active NDPKs and that NM23 generally refers to clinical studies on metastasis, we use here NME/NDPK to denote the proteins. Since their discovery in the 1950's, NMEs/NDPKs have been shown to be involved in multiple physiological and pathological cellular processes, but the molecular mechanisms have not been fully determined. Recent progress in elucidating these underlying mechanisms has been presented by experts in the field at the 10th International Congress on the NDPK/NME/AWD protein family in October 2016 in Dubrovnik, Croatia, and is summarized in review articles or original research in this and an upcoming issue of Laboratory Investigation. Within this editorial, we discuss three major cellular processes that involve members of the multi-functional NME/NDPK family: (i) cancer and metastasis dissemination, (ii) membrane remodeling and nucleotide channeling, and iii) protein histidine phosphorylation.
Collapse
|