1
|
Zou Y, Guo Q, Chang Y, Zhong Y, Cheng L, Wei W. Alternative splicing affects synapses in the hippocampus of offspring after maternal fructose exposure during gestation and lactation. Chem Biol Interact 2023; 379:110518. [PMID: 37121297 DOI: 10.1016/j.cbi.2023.110518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Increased fructose over-intake is a global issue. Maternal fructose exposure during gestation and lactation can impair brain development in offspring. However, the effect on synapses is still unknown. For the diversification of RNA and biological functions, alternative splicing (AS) and alternative polyadenylation (APA) are essential. We constructed a maternal high-fructose diet model by administering 13% and 40% fructose water. The student's t-test analyzed the results of RT-qPCR. All other results were analyzed by one-way analysis of variance. The animal behavior experiment results revealed that conditioning and associative memory had been damaged. The proteins that form synapses were consistently low-expressed. In addition, compared with the control group, the Oxford Nanopore Technologies platform's full-length RNA-sequencing identified 298 different spliced genes (DSGs) and 51 differentially expressed alternative splicing (DEAS) genes in the 13% fructose group. 313 DSGs and 74 DEAS genes were in the 40% fructose group. Enrichment analysis based on these altered genes revealed some enlightening items and pathways. Our findings demonstrated the transcriptome mechanism underlying maternal fructose exposure during gestation and lactation and impaired synapse function during the transcripts' editing.
Collapse
Affiliation(s)
- Yuchen Zou
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Qing Guo
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yidan Chang
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Yongyong Zhong
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Lin Cheng
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China
| | - Wei Wei
- Child and Adolescent Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, PR China.
| |
Collapse
|
2
|
Morales C, Morici JF, Miranda M, Gallo FT, Bekinschtein P, Weisstaub NV. Neurophotonics Approaches for the Study of Pattern Separation. Front Neural Circuits 2020; 14:26. [PMID: 32587504 PMCID: PMC7298152 DOI: 10.3389/fncir.2020.00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 11/26/2022] Open
Abstract
Successful memory involves not only remembering over time but also keeping memories distinct. Computational models suggest that pattern separation appears as a highly efficient process to discriminate between overlapping memories. Furthermore, lesion studies have shown that the dentate gyrus (DG) participates in pattern separation. However, these manipulations did not allow identifying the neuronal mechanism underlying pattern separation. The development of different neurophotonics techniques, together with other genetic tools, has been useful for the study of the microcircuit involved in this process. It has been shown that less-overlapped information would generate distinct neuronal representations within the granule cells (GCs). However, because glutamatergic or GABAergic cells in the DG are not functionally or structurally homogeneous, identifying the specific role of the different subpopulations remains elusive. Then, understanding pattern separation requires the ability to manipulate a temporal and spatially specific subset of cells in the DG and ideally to analyze DG cells activity in individuals performing a pattern separation dependent behavioral task. Thus, neurophotonics and calcium imaging techniques in conjunction with activity-dependent promoters and high-resolution microscopy appear as important tools for this endeavor. In this work, we review how different neurophotonics techniques have been implemented in the elucidation of a neuronal network that supports pattern separation alone or in combination with traditional techniques. We discuss the limitation of these techniques and how other neurophotonic techniques could be used to complement the advances presented up to this date.
Collapse
Affiliation(s)
- Cristian Morales
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Facundo Morici
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Magdalena Miranda
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Francisco Tomás Gallo
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Noelia V. Weisstaub
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Concejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| |
Collapse
|
3
|
Wu R, Cui S, Wang JH. miRNA-324/-133a essential for recruiting new synapse innervations and associative memory cells in coactivated sensory cortices. Neurobiol Learn Mem 2020; 172:107246. [PMID: 32387677 DOI: 10.1016/j.nlm.2020.107246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/28/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
After the integrative storage of associated signals, a signal induces the recollection of its associated signal, or the other way around. This associative memory is essential to associative thinking, logical reasoning, imagination and computation. In terms of cellular mechanisms underlying associative memory, new mutual synapse innervations are formed among those coactivated neurons, so that they are recruited to be associative memory cells or associative memory neurons. These associative memory cells receive new synapse innervations alongside innate synapse inputs and encode signals carried by these inputs. We proposed to examine microRNAs as initiative factors for recruiting new synapse innervations and associative memory cells. In a mouse model of associative memory characterized as the reciprocal retrieval of associated whisker and odor signals, barrel and piriform cortical neurons gain their ability to encode whisker and odorant signals based on the newly formed synapse innervations between these coactivated cortices besides innate synapse inputs. miRNA-324 and miRNA-133a are required for recruiting these new synapse innervations and associative memory cells as well as sufficient for facilitating their recruitments, but not for innate synapse inputs. Therefore, the coactivation of sensory cortices through microRNA as initiative factor to recruit new mutual synapse innervations and associative memory cells for associative memory.
Collapse
Affiliation(s)
- Ruixiang Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Guo L, Zhu Z, Wang G, Cui S, Shen M, Song Z, Wang JH. microRNA-15b contributes to depression-like behavior in mice by affecting synaptic protein levels and function in the nucleus accumbens. J Biol Chem 2020; 295:6831-6848. [PMID: 32209659 DOI: 10.1074/jbc.ra119.012047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 03/20/2020] [Indexed: 11/06/2022] Open
Abstract
Major depression is a prevalent affective disorder characterized by recurrent low mood. It presumably results from stress-induced deteriorations of molecular networks and synaptic functions in brain reward circuits of genetically-susceptible individuals through epigenetic processes. Epigenetic regulator microRNA-15b inhibits neuronal progenitor proliferation and is up-regulated in the medial prefrontal cortex of mice that demonstrate depression-like behavior, indicating the contribution of microRNA-15 to major depression. Using a mouse model of major depression induced by chronic unpredictable mild stress (CUMS), here we examined the effects of microRNA-15b on synapses and synaptic proteins in the nucleus accumbens of these mice. The application of a microRNA-15b antagomir into the nucleus accumbens significantly reduced the incidence of CUMS-induced depression and reversed the attenuations of excitatory synapse and syntaxin-binding protein 3 (STXBP3A)/vesicle-associated protein 1 (VAMP1) expression. In contrast, the injection of a microRNA-15b analog into the nucleus accumbens induced depression-like behavior as well as attenuated excitatory synapses and STXBP3A/VAMP1 expression similar to the down-regulation of these processes induced by the CUMS. We conclude that microRNA-15b-5p may play a critical role in chronic stress-induced depression by decreasing synaptic proteins, innervations, and activities in the nucleus accumbens. We propose that the treatment of anti-microRNA-15b-5p may convert stress-induced depression into resilience.
Collapse
Affiliation(s)
- Li Guo
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoming Zhu
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Guangyan Wang
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng Shen
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Zhenhua Song
- School of Pharmacy, Qingdao University, Qingdao Shandong 266021, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ni H, Ding H, Tao J, Wang Y, Tao M, Huang L. [Effects of olfactory deprivation on action potential and ankyrin-G expression in glutamatergic neurons in the barrel cortex of mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:262-267. [PMID: 32376530 DOI: 10.12122/j.issn.1673-4254.2020.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effect of upregulated touch sensation induced by olfactory deprivation on action potentials and ankyrin-G expression in the glutamatergic neurons in the barrel cortex of mice. METHODS Chloroform (40 μL) was dropped into the unilateral nasal cavity to induce olfactory deprivation in 40 C57 mice (12 days old), whose glutamatergic neurons were genetically labeled with yellow fluorescent protein (YFP). Behavioral experiments were carried out to assess the effects of olfactory deprivation on whisker tactile of the mice. The action potentials of the glutamatergic neurons in the barrel cortex on the side with or without chloroform treatment (olfactory deprivation group and control group, respectively) were recorded by patch-clamp electrophysiological recording, and ankyrin-G expression in the proximal axonal segment of the neurons was detected with immunohistochemistry. RESULTS Compared with those on the control side, the inter-spike intervals of the barrel glutamatergic neurons were significantly decreased and the absolute refractory periods were significantly shortened on the side with olfactory deprivation (P < 0.01); the expression of ankyrin-G was also significantly increased in the proximal axonal segment of the glutamatergic neurons in the barrel cortex on the side with olfactory deprivation (P < 0.01). CONCLUSIONS Olfaction deprivation induces up-regulation of touch sensation in mice possibly as a result of functional enhancement of the glutamatergic neurons and increased ankyrin-G expression in the barrel cortex.
Collapse
Affiliation(s)
- Hong Ni
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Haihu Ding
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Jing Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Yuanyuan Wang
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Mingfei Tao
- Department of Functional Experiment Center, Bengbu Medical College, Bengbu 233030, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
6
|
Du K, Lu W, Sun Y, Feng J, Wang JH. mRNA and miRNA profiles in the nucleus accumbens are related to fear memory and anxiety induced by physical or psychological stress. J Psychiatr Res 2019; 118:44-65. [PMID: 31493709 DOI: 10.1016/j.jpsychires.2019.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023]
Abstract
Anxiety is presumably driven by fear memory. The nucleus accumbens involves emotional regulation. Molecular profiles in the nucleus accumbens related to stress-induced fear memory remain elucidated. Fear memory in mice was induced by a paradigm of social defeat. Physical and psychological stress was delivered to an intruder that was attacked by an aggressive resident. Meanwhile, an observer experienced psychological stress by seeing aggressor attacks. The nucleus accumbens tissues from intruder and observer mice that appear fear memory and anxiety as well as control mice were harvested for analyses of mRNA and miRNA profiles by high throughput sequencing. In the nucleus accumbens of intruders and observers with fear memory and anxiety, genes encoding AdrRα, AChRM2/3, GluRM2/8, HrR1, SSR, BDNF and AC are upregulated, while genes encoding DR3/5, PR2, GPγ8 and P450 are downregulated. Physical and/or psychological stress leads to fear memory and anxiety likely by molecules relevant to certain synapses. Moreover, there are differential expressions in genes that encode GABARA, 5-HTR1/5, CREB3, AChRM2, RyR, Wnt and GPγ13 in the nucleus accumbens from intruders versus observers. GABAergic, serotonergic and cholinergic synapses as well as calcium, Wnt and CREB signaling molecules may be involved in fear memory differently induced by psychological stress and physical/psychological stress. The data from analyzing mRNA and miRNA profiles are consistent. Some molecules are validated by qRT-PCR and dual luciferase reporter assay. Fear memory and anxiety induced by the mixture of physical and psychological stress or psychological stress appear influenced by complicated molecular mechanisms in the nucleus accumbens.
Collapse
Affiliation(s)
- Kaixin Du
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China.
| | - Yan Sun
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Jing Feng
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong, 266021, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
7
|
Gao Z, Wu R, Chen C, Wen B, Liu Y, Lu W, Chen N, Feng J, Fan R, Wang D, Cui S, Wang JH. Coactivations of barrel and piriform cortices induce their mutual synapse innervations and recruit associative memory cells. Brain Res 2019; 1721:146333. [PMID: 31302097 DOI: 10.1016/j.brainres.2019.146333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 01/23/2023]
Abstract
After associative learning, a signal induces the recall of its associated signal, or the other way around. This reciprocal retrieval of associated signals is essential for associative thinking and logical reasoning. For the cellular mechanism underlying this associative memory, we hypothesized that the formation of synapse innervations among coactivated sensory cortices and the recruitment of associative memory cells were involved in the integrative storage and reciprocal retrieval of associated signals. Our study indicated that the paired whisker and olfaction stimulations led to an odorant-induced whisker motion and a whisker-induced olfaction response, a reciprocal form of associative memory retrieval. In mice that showed the reciprocal retrieval of associated signals, their barrel and piriform cortical neurons became mutually innervated through their axon projection and new synapse formation. These piriform and barrel cortical neurons gained the ability to encode both whisker and olfaction signals based on synapse innervations from the innate input and the newly formed input. Therefore, the associated activation of sensory cortices by pairing input signals initiates their mutual synapse innervations, and the neurons innervated by new and innate synapses are recruited to be associative memory cells that encode these associated signals. Mutual synapse innervations among sensory cortices to recruit associative memory cells may compose the primary foundation for the integrative storage and reciprocal retrieval of associated signals. Our study also reveals that new synapses onto the neurons enable these neurons to encode memories to new specific signals.
Collapse
Affiliation(s)
- Zilong Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruixiang Wu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changfeng Chen
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Bo Wen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Liu
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Wei Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruichen Fan
- Department of Pathophysiology, Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Dangui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Cui
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Hui Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|