1
|
Madern D, Halgand F, Houée-Levin C, Dufour AB, Coquille S, Ansanay-Alex S, Sacquin-Mora S, Brochier-Armanet C. The Characterization of Ancient Methanococcales Malate Dehydrogenases Reveals That Strong Thermal Stability Prevents Unfolding Under Intense γ-Irradiation. Mol Biol Evol 2024; 41:msae231. [PMID: 39494471 PMCID: PMC11631191 DOI: 10.1093/molbev/msae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.
Collapse
Affiliation(s)
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris-Saclay, 91405 Orsay, France
| | | | - Anne-Béatrice Dufour
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69622, France
| | | | | | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris-Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69622, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
2
|
Mircea C, Rusu I, Levei EA, Cristea A, Gridan IM, Zety AV, Banciu HL. The Fungal Side of the Story: Saprotrophic- vs. Symbiotrophic-Predicted Ecological Roles of Fungal Communities in Two Meromictic Hypersaline Lakes from Romania. MICROBIAL ECOLOGY 2024; 87:130. [PMID: 39417884 PMCID: PMC11486810 DOI: 10.1007/s00248-024-02446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Over three-quarters of Earth's surface exhibits extreme environments where life thrives under harsh physicochemical conditions. While prokaryotes have often been investigated in these environments, only recent studies have revealed the remarkable adaptability of eukaryotes, in particular fungi. This study explored the mycobiota of two meromictic hypersaline lakes, Ursu and Fără Fund, in Transylvania (Romania). The intrinsic and extrinsic fungal diversity was assessed using amplicon sequencing of environmental DNA samples from sediments, water columns, surrounding soils, and an associated rivulet. The fungal communities, illustrated by the 18S rRNA gene and ITS2 region, exhibited contrasting patterns between the lakes. The ITS2 region assessed better than the 18S rRNA gene the fungal diversity. The ITS2 data showed that Ascomycota was the most abundant fungal group identified in both lakes, followed by Aphelidiomycota, Chytridiomycota, and Basidiomycota. Despite similar α-diversity levels, significant differences in fungal community structure were observed between the lakes, correlated with salinity, total organic carbon, total nitrogen, and ammonium. Taxonomic profiling revealed depth-specific variations, with Saccharomycetes prevalent in Ursu Lake's deeper layers and Lecanoromycetes prevalent in the Fără Fund Lake. The functional annotation using FungalTraits revealed diverse ecological roles within the fungal communities. Lichenized fungi were dominant in Fără Fund Lake, while saprotrophs were abundant in Ursu Lake. Additionally, wood and soil saprotrophs, along with plant pathogens, were more prevalent in the surrounding soils, rivulet, and surface water layers. A global overview of the trophic relations in each studied niche was impossible to establish due to the unconnected graphs corresponding to the trophic interactions of the analyzed fungi. Plotting the unweighted connected subgraphs at the genus level suggests that salinity made the studied niches similar for the identified taxa. This study shed light on the understudied fungal diversity, distribution, and ecological functions in hypersaline environments.
Collapse
Grants
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P1-1.1-PD-2021-0634 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
- PN-III-P4-ID-PCE-2020-1559 Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii
Collapse
Affiliation(s)
- Cristina Mircea
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Centre, Interdisciplinary Research Institute On Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ioana Rusu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania.
- Molecular Biology Centre, Interdisciplinary Research Institute On Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Romania.
| | - Erika Andrea Levei
- INCDO INOE 2000 Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Adorján Cristea
- Department of Taxonomy and Ecology, Faculty of Biology and Geology, Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Ionuț Mădălin Gridan
- Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Vasile Zety
- Doctoral School of Integrative Biology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
- Emil G. Racoviță Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Dos Santos A, Schultz J, Almeida Trapp M, Modolon F, Romanenko A, Kumar Jaiswal A, Gomes L, Rodrigues-Filho E, Rosado AS. Investigating Polyextremophilic Bacteria in Al Wahbah Crater, Saudi Arabia: A Terrestrial Model for Life on Saturn's Moon Enceladus. ASTROBIOLOGY 2024; 24:824-838. [PMID: 39159439 DOI: 10.1089/ast.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The study of extremophilic microorganisms has sparked interest in understanding extraterrestrial microbial life. Such organisms are fundamental for investigating life forms on Saturn's icy moons, such as Enceladus, which is characterized by potentially habitable saline and alkaline niches. Our study focused on the salt-alkaline soil of the Al Wahbah crater in Saudi Arabia, where we identified microorganisms that could be used as biological models to understand potential life on Enceladus. The search involved isolating 48 bacterial strains, sequencing the genomes of two thermo-haloalkaliphilic strains, and characterizing them for astrobiological application. A deeper understanding of the genetic composition and functional capabilities of the two novel strains of Halalkalibacterium halodurans provided valuable insights into their survival strategies and the presence of coding genes and pathways related to adaptations to environmental stressors. We also used mass spectrometry with a molecular network approach, highlighting various classes of molecules, such as phospholipids and nonproteinogenic amino acids, as potential biosignatures. These are essential features for understanding life's adaptability under extreme conditions and could be used as targets for biosignatures in upcoming missions exploring Enceladus' orbit. Furthermore, our study reinforces the need to look at new extreme environments on Earth that might contribute to the astrobiology field.
Collapse
Affiliation(s)
- Alef Dos Santos
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marilia Almeida Trapp
- Analytical Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Fluvio Modolon
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrii Romanenko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arun Kumar Jaiswal
- Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Gomes
- Post-Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Alexandre Soares Rosado
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Borsodi AK. Taxonomic diversity of extremophilic prokaryotes adapted to special environmental parameters in Hungary: a review. Biol Futur 2024; 75:183-192. [PMID: 38753295 DOI: 10.1007/s42977-024-00224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
The taxonomic and metabolic diversity of prokaryotes and their adaptability to extreme environmental parameters have allowed extremophiles to find their optimal living conditions under extreme conditions for one or more environmental parameters. Natural habitats abundant in extremophilic microorganisms are relatively rare in Hungary. Nevertheless, alkaliphiles and halophiles can flourish in shallow alkaline lakes (soda pans) and saline (solonetz) soils, where extreme weather conditions favor the development of unique bacterial communities. In addition, the hot springs and thermal wells that supply spas and thermal baths and provide water for energy use are suitable colonization sites for thermophiles and hyperthermophiles. Polyextremophiles, adapted to multiple extreme circumstances, can be found in the aphotic, nutrient-poor and radioactive hypogenic caves of the Buda Thermal Karst, among others. The present article reviews the organization, taxonomic composition, and potential role of different extremophilic bacterial communities in local biogeochemical cycles, based on the most recent studies on extremophiles in Hungary.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
5
|
Aguzzi J, Cuadros J, Dartnell L, Costa C, Violino S, Canfora L, Danovaro R, Robinson NJ, Giovannelli D, Flögel S, Stefanni S, Chatzievangelou D, Marini S, Picardi G, Foing B. Marine Science Can Contribute to the Search for Extra-Terrestrial Life. Life (Basel) 2024; 14:676. [PMID: 38929660 PMCID: PMC11205085 DOI: 10.3390/life14060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.
Collapse
Affiliation(s)
- Jacopo Aguzzi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | - Javier Cuadros
- Natural History Museum, Cromwell Road, London SW7 5D, UK;
| | - Lewis Dartnell
- School of Life Sciences, University of Westminster, 115 New Cavendish St, London W1W 6UW, UK;
| | - Corrado Costa
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Simona Violino
- Consiglio per la Ricerca in Agricoltura e l’Analisi Dell’Economia Agraria—Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, 00015 Monterotondo, Italy; (C.C.); (S.V.)
| | - Loredana Canfora
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’economia Agraria—Centro di Ricerca Agricoltura e Ambiente, 00182 Roma, Italy;
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marcs (UNIVPM), 60131 Ancona, Italy;
| | - Nathan Jack Robinson
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
- National Research Council—Institute of Marine Biological Resources and Biotechnologies (CNR-IRBIM), 60125 Ancona, Italy
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry, Geochemistry Department—Woods Hole Oceanographic Institution, Falmouth, MA 02543, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Sascha Flögel
- GEOMAR Helmholtz Centre for Ocean Research, 24106 Kiel, Germany;
| | - Sergio Stefanni
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
| | | | - Simone Marini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (S.S.); (S.M.)
- Institute of Marine Sciences, National Research Council of Italy (CNR-ISMAR), 19032 La Spezia, Italy
| | - Giacomo Picardi
- Instituto de Ciencias del Mar (ICM)—CSIC, 08003 Barcelona, Spain; (N.J.R.); (D.C.); (G.P.)
| | - Bernard Foing
- Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1081-1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
6
|
Zenteno‐Alegría CO, Yarzábal Rodríguez LA, Ciancas Jiménez J, Álvarez Gutiérrez PE, Gunde‐Cimerman N, Batista‐García RA. Fungi beyond limits: The agricultural promise of extremophiles. Microb Biotechnol 2024; 17:e14439. [PMID: 38478382 PMCID: PMC10936741 DOI: 10.1111/1751-7915.14439] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 10/17/2024] Open
Abstract
Global climate changes threaten food security, necessitating urgent measures to enhance agricultural productivity and expand it into areas less for agronomy. This challenge is crucial in achieving Sustainable Development Goal 2 (Zero Hunger). Plant growth-promoting microorganisms (PGPM), bacteria and fungi, emerge as a promising solution to mitigate the impact of climate extremes on agriculture. The concept of the plant holobiont, encompassing the plant host and its symbiotic microbiota, underscores the intricate relationships with a diverse microbial community. PGPM, residing in the rhizosphere, phyllosphere, and endosphere, play vital roles in nutrient solubilization, nitrogen fixation, and biocontrol of pathogens. Novel ecological functions, including epigenetic modifications and suppression of virulence genes, extend our understanding of PGPM strategies. The diverse roles of PGPM as biofertilizers, biocontrollers, biomodulators, and more contribute to sustainable agriculture and environmental resilience. Despite fungi's remarkable plant growth-promoting functions, their potential is often overshadowed compared to bacteria. Arbuscular mycorrhizal fungi (AMF) form a mutualistic symbiosis with many terrestrial plants, enhancing plant nutrition, growth, and stress resistance. Other fungi, including filamentous, yeasts, and polymorphic, from endophytic, to saprophytic, offer unique attributes such as ubiquity, morphology, and endurance in harsh environments, positioning them as exceptional plant growth-promoting fungi (PGPF). Crops frequently face abiotic stresses like salinity, drought, high UV doses and extreme temperatures. Some extremotolerant fungi, including strains from genera like Trichoderma, Penicillium, Fusarium, and others, have been studied for their beneficial interactions with plants. Presented examples of their capabilities in alleviating salinity, drought, and other stresses underscore their potential applications in agriculture. In this context, extremotolerant and extremophilic fungi populating extreme natural environments are muchless investigated. They represent both new challenges and opportunities. As the global climate evolves, understanding and harnessing the intricate mechanisms of fungal-plant interactions, especially in extreme environments, is paramount for developing effective and safe plant probiotics and using fungi as biocontrollers against phytopathogens. Thorough assessments, comprehensive methodologies, and a cautious approach are crucial for leveraging the benefits of extremophilic fungi in the changing landscape of global agriculture, ensuring food security in the face of climate challenges.
Collapse
Affiliation(s)
- Claribel Orquídea Zenteno‐Alegría
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Facultad de Ciencias Químicas e IngenieríaUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
| | | | | | | | - Nina Gunde‐Cimerman
- Departament of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Ramón Alberto Batista‐García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y AplicadasUniversidad Autónoma del Estado de MorelosCuernavacaMorelosMexico
- Departamento de Biología Animal, Biología Vegetal y Ecología. Facultad de Ciencias ExperimentalesUniversidad de JaénJaénSpain
| |
Collapse
|
7
|
Ben Hmad I, Gargouri A. Halophilic filamentous fungi and their enzymes: Potential biotechnological applications. J Biotechnol 2024; 381:11-18. [PMID: 38159888 DOI: 10.1016/j.jbiotec.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Recently, interest in the study of microorganisms growing under extreme conditions, particularly halophiles, has increased due to their potential use in industrial processes. Halophiles are the class of microorganisms that grow optimally at high NaCl concentrations and are capable of producing halophilic enzymes capable of catalyzing reactions under harsh conditions. So far, fungi are the least studied halophilic microorganisms, even though they have been shown to counteract these extreme conditions by producing secondary metabolites with very interesting properties. This review highlights mechanisms that allow halophilic fungi to adapt high salinity and the specificity of their enzymes to a spectrum of action in industrial and environmental applications. The peculiarities of these enzymes justify the urgent need to apply green alternative compounds in industries.
Collapse
Affiliation(s)
- Ines Ben Hmad
- Laboratory of Molecular Biology of Eukaryotes, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", Sfax 3018, Tunisia.
| | - Ali Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", Sfax 3018, Tunisia
| |
Collapse
|
8
|
Coker JA. 'All About' Extremophiles. Fac Rev 2023; 12:27. [PMID: 38027090 PMCID: PMC10630985 DOI: 10.12703/r/12-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Despite common perception, most of Earth is what is often referred to as an 'extreme environment.' Yet to the organisms that call these places home, it is simply that (home). They have adapted to thrive in these environments and, in the process, have evolved many unique adaptations at the molecular- and 'omic-level. Scientists' interest in these organisms has typically been in how they and their products can be harnessed for biotechnological applications and the environments where they are found, while the general public's veers more toward a fascination with their deviation from the 'norm'. However, these organisms have so much more to tell us about Life and the myriad ways there are to perform 'simple' biological processes.
Collapse
Affiliation(s)
- James A Coker
- Center for Biotechnology Education, Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
9
|
Huanca-Juarez J, Nascimento-Silva EA, Silva NH, Silva-Rocha R, Guazzaroni ME. Identification and functional analysis of novel protein-encoding sequences related to stress-resistance. Front Microbiol 2023; 14:1268315. [PMID: 37840709 PMCID: PMC10568318 DOI: 10.3389/fmicb.2023.1268315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Currently, industrial bioproducts are less competitive than chemically produced goods due to the shortcomings of conventional microbial hosts. Thus, is essential developing robust bacteria for improved cell tolerance to process-specific parameters. In this context, metagenomic approaches from extreme environments can provide useful biological parts to improve bacterial robustness. Here, in order to build genetic constructs that increase bacterial resistance to diverse stress conditions, we recovered novel protein-encoding sequences related to stress-resistance from metagenomic databases using an in silico approach based on Hidden-Markov-Model profiles. For this purpose, we used metagenomic shotgun sequencing data from microbial communities of extreme environments to identify genes encoding chaperones and other proteins that confer resistance to stress conditions. We identified and characterized 10 novel protein-encoding sequences related to the DNA-binding protein HU, the ATP-dependent protease ClpP, and the chaperone protein DnaJ. By expressing these genes in Escherichia coli under several stress conditions (including high temperature, acidity, oxidative and osmotic stress, and UV radiation), we identified five genes conferring resistance to at least two stress conditions when expressed in E. coli. Moreover, one of the identified HU coding-genes which was retrieved from an acidic soil metagenome increased E. coli tolerance to four different stress conditions, implying its suitability for the construction of a synthetic circuit directed to expand broad bacterial resistance.
Collapse
Affiliation(s)
- Joshelin Huanca-Juarez
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Edson Alexandre Nascimento-Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| | - Ninna Hirata Silva
- Department of Cell and Molecular Biology, Ribeirão Preto School of Medicine (FMRP) – University of São Paulo (USP), São Paulo, Brazil
| | | | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto (FFCLRP) – University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
10
|
Rekadwad BN, Li WJ, Gonzalez JM, Punchappady Devasya R, Ananthapadmanabha Bhagwath A, Urana R, Parwez K. Extremophiles: the species that evolve and survive under hostile conditions. 3 Biotech 2023; 13:316. [PMID: 37637002 PMCID: PMC10457277 DOI: 10.1007/s13205-023-03733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Extremophiles possess unique cellular and molecular mechanisms to assist, tolerate, and sustain their lives in extreme habitats. These habitats are dominated by one or more extreme physical or chemical parameters that shape existing microbial communities and their cellular and genomic features. The diversity of extremophiles reflects a long list of adaptations over millions of years. Growing research on extremophiles has considerably uncovered and increased our understanding of life and its limits on our planet. Many extremophiles have been greatly explored for their application in various industrial processes. In this review, we focused on the characteristics that microorganisms have acquired to optimally thrive in extreme environments. We have discussed cellular and molecular mechanisms involved in stability at respective extreme conditions like thermophiles, psychrophiles, acidophiles, barophiles, etc., which highlight evolutionary aspects and the significance of extremophiles for the benefit of mankind.
Collapse
Affiliation(s)
- Bhagwan Narayan Rekadwad
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- National Centre for Microbial Resource (NCMR), DBT-National Centre for Cell Science (DBT-NCCS), Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, 411007 Maharashtra India
- Institute of Bioinformatics and Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Ganeshkhind Road, Pune, 411007 Maharashtra India
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People’s Republic of China
| | - Juan M. Gonzalez
- Microbial Diversity and Microbiology of Extreme Environments Research Group, Agencia Estatal Consejo Superior De Investigaciones Científicas, IRNAS-CSIC, Avda. Reina Mercedes, 10, 41012 Seville, Spain
| | - Rekha Punchappady Devasya
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
| | - Arun Ananthapadmanabha Bhagwath
- Present Address: Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018 Karnataka India
- Yenepoya Institute of Arts, Science, Commerce and Management, A Constituent Unit of Yenepoya (Deemed to be University), Yenepoya Complex, Balmatta, Mangalore, 575002 Karnataka India
| | - Ruchi Urana
- Department of Environmental Science and Engineering, Faculty of Environmental and Bio Sciences and Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001 India
| | - Khalid Parwez
- Department of Microbiology, Shree Narayan Medical Institute and Hospital, Saharsa, Bihar 852201 India
| |
Collapse
|
11
|
Aparici-Carratalá D, Esclapez J, Bautista V, Bonete MJ, Camacho M. Archaea: current and potential biotechnological applications. Res Microbiol 2023; 174:104080. [PMID: 37196775 DOI: 10.1016/j.resmic.2023.104080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Archaea are microorganisms with great ability to colonize some of the most inhospitable environments in nature, managing to survive in places with extreme characteristics for most microorganisms. Its proteins and enzymes are stable and can act under extreme conditions in which other proteins and enzymes would degrade. These attributes make them ideal candidates for use in a wide range of biotechnological applications. This review describes the most important applications, both current and potential, that archaea present in Biotechnology, classifying them according to the sector to which the application is directed. It also analyzes the advantages and disadvantages of its use.
Collapse
Affiliation(s)
- David Aparici-Carratalá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain.
| |
Collapse
|
12
|
Ianutsevich EA, Danilova OA, Grum-Grzhimaylo OA, Tereshina VM. The Role of Osmolytes and Membrane Lipids in the Adaptation of Acidophilic Fungi. Microorganisms 2023; 11:1733. [PMID: 37512905 PMCID: PMC10383115 DOI: 10.3390/microorganisms11071733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/11/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Acidophiles maintain near-neutral intracellular pH using proton pumps. We have suggested the protective role of osmolytes and membrane lipids in the adaptation to an acidic environment. Previously we have observed, for the first time, high levels of trehalose in acidophilic basidiomycete Sistotrema brinkmannii. Here, we have studied the composition of both osmolytes and membrane lipids of two more acidophilic fungi. Trehalose and polyols were among the main osmolytes during growth under optimal conditions (pH 4.0) in basidiomycete Phlebiopsis gigantea and ascomycete Mollisia sp. Phosphatidic acids, phosphatidylethanolamines, phosphatidylcholines, and sterols, were predominant membrane lipids in both fungi. P. gigantea had a narrow optimum of growth at pH 4.0, resulting in a sharp decline of growth rate at pH 2.6 and 5.0, accompanied by a decrease in the number of osmolytes and significant changes in the composition of membrane lipids. In contrast, Mollisia sp. had a broad optimal growth range (pH 3.0-5.0), and the number of osmolytes either stayed the same (at pH 6.0) or increased (at pH 2.6), while membrane lipids composition remained unchanged. Thus, the data obtained indicate the participation of osmolytes and membrane lipids in the adaptation of acidophilic fungi.
Collapse
Affiliation(s)
- Elena A Ianutsevich
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | - Olga A Danilova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| | - Olga A Grum-Grzhimaylo
- White Sea Biological Station, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
- Laboratory of Genetics, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera M Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., 119071 Moscow, Russia
| |
Collapse
|
13
|
Daddaoua A, Álvarez C, Oggerin M, Rodriguez N, Duque E, Amils R, Armengaud J, Segura A, Ramos JL. Rio Tinto as a niche for acidophilus enzymes of industrial relevance. Microb Biotechnol 2023; 16:1069-1086. [PMID: 36748404 PMCID: PMC10128141 DOI: 10.1111/1751-7915.14192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/06/2022] [Indexed: 02/08/2023] Open
Abstract
Lignocellulosic residues are amongst the most abundant waste products on Earth. Therefore, there is an increasing interest in the utilization of these residues for bioethanol production and for biorefineries to produce compounds of industrial interest. Enzymes that breakdown cellulose and hemicellulose into oligomers and monosaccharides are required in these processes and cellulolytic enzymes with optimum activity at a low pH area are desirable for industrial processes. Here, we explore the fungal biodiversity of Rıo Tinto, the largest acidic ecosystem on Earth, as far as the secretion of cellulolytic enzymes is concerned. Using colorimetric and industrial substrates, we show that a high proportion of the fungi present in this extremophilic environment secrete a wide range of enzymes that are able to hydrolyze cellulose and hemicellulose at acidic pH (4.5-5). Shotgun proteomic analysis of the secretomes of some of these fungi has identified different cellulases and hemicellulolytic enzymes as well as a number of auxiliary enzymes. Supplementation of pre-industrial cocktails from Myceliophtora with Rio Tinto secretomes increased the amount of monosaccharides released from corn stover or sugar cane straw. We conclude that the Rio Tinto fungi display a good variety of hydrolytic enzymes with high industrial potential.
Collapse
Affiliation(s)
- Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Faculty of PharmacyUniversity of GranadaGranadaSpain
| | - Consolación Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC‐US)Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, CIC CartujaSevilleSpain
| | - Monika Oggerin
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
| | | | | | - Ricardo Amils
- Centro de Biología Molecular Severo Ochoa (CSIC‐UAM)Universidad Autónoma de MadridMadridSpain
- Centro de Astrobiología (INTA‐CSIC)Torrejón de ArdozSpain
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS)Université Paris Saclay, CEA, INRAEBagnols‐sur‐CèzeFrance
| | - Ana Segura
- Estación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | | |
Collapse
|
14
|
Parra M, Libkind D, Hittinger CT, Álvarez L, Bellora N. Assembly and comparative genome analysis of a Patagonian Aureobasidium pullulans isolate reveals unexpected intraspecific variation. Yeast 2023. [PMID: 37114349 DOI: 10.1002/yea.3853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aureobasidium pullulans is a yeast-like fungus with remarkable phenotypic plasticity widely studied for its importance for the pharmaceutical and food industries. So far, genomic studies with strains from all over the world suggest they constitute a genetically unstructured population, with no association by habitat. However, the mechanisms by which this genome supports so many phenotypic permutations are still poorly understood. Recent works have shown the importance of sequencing yeast genomes from extreme environments to increase the repertoire of phenotypic diversity of unconventional yeasts. In this study, we present the genomic draft of A. pullulans strain from a Patagonian yeast diversity hotspot, re-evaluate its taxonomic classification based on taxogenomic approaches, and annotate its genome with high-depth transcriptomic data. Our analysis suggests this isolate could be considered a novel variant at an early stage of the speciation process. The discovery of divergent strains in a genomically homogeneous group, such as A. pullulans, can be valuable in understanding the evolution of the species. The identification and characterization of new variants will not only allow finding unique traits of biotechnological importance, but also optimize the choice of strains whose phenotypes will be characterized, providing new elements to explore questions about plasticity and adaptation.
Collapse
Affiliation(s)
- Micaela Parra
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Chris Todd Hittinger
- Laboratory of Genetics, Center for Genomic Science Innovation, DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucía Álvarez
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina
| | - Nicolás Bellora
- Laboratorio de Genómica Computacional, Instituto de Tecnologías Nucleares para la Salud (INTECNUS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| |
Collapse
|
15
|
Ye JW, Lin YN, Yi XQ, Yu ZX, Liu X, Chen GQ. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol 2023; 41:342-357. [PMID: 36535816 DOI: 10.1016/j.tibtech.2022.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Microbial biomanufacturing, powered by the advances of synthetic biology, has attracted growing interest for the production of diverse products. In contrast to conventional microbes, extremophiles have shown better performance for low-cost production owing to their outstanding growth and synthesis capacity under stress conditions, allowing unsterilized fermentation processes. We review increasing numbers of products already manufactured utilizing extremophiles in recent years. In addition, genetic parts, molecular tools, and manipulation approaches for extremophile engineering are also summarized, and challenges and opportunities are predicted for non-conventional chassis. Next-generation industrial biotechnology (NGIB) based on engineered extremophiles promises to simplify biomanufacturing processes and achieve open and continuous fermentation, without sterilization, and utilizing low-cost substrates, making NGIB an attractive green process for sustainable manufacturing.
Collapse
Affiliation(s)
- Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xue-Qing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo-Xuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Liu
- PhaBuilder Biotech Company, Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Ministry of Education (MOE) Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
16
|
Laurent H, Youngs TGA, Headen TF, Soper AK, Dougan L. The ability of trimethylamine N-oxide to resist pressure induced perturbations to water structure. Commun Chem 2022; 5:116. [PMID: 36697784 PMCID: PMC9814673 DOI: 10.1038/s42004-022-00726-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/19/2022] [Indexed: 01/28/2023] Open
Abstract
Trimethylamine N-oxide (TMAO) protects organisms from the damaging effects of high pressure. At the molecular level both TMAO and pressure perturb water structure but it is not understood how they act in combination. Here, we use neutron scattering coupled with computational modelling to provide atomistic insight into the structure of water under pressure at 4 kbar in the presence and absence of TMAO. The data reveal that TMAO resists pressure-induced perturbation to water structure, particularly in retaining a clear second solvation shell, enhanced hydrogen bonding between water molecules and strong TMAO - water hydrogen bonds. We calculate an 'osmolyte protection' ratio at which pressure and TMAO-induced energy changes effectively cancel out. Remarkably this ratio translates across scales to the organism level, matching the observed concentration dependence of TMAO in the muscle tissue of organisms as a function of depth. Osmolyte protection may therefore offer a molecular mechanism for the macroscale survival of life in extreme environments.
Collapse
Affiliation(s)
- Harrison Laurent
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK
| | - Tristan G. A. Youngs
- grid.76978.370000 0001 2296 6998ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
| | - Thomas F. Headen
- grid.76978.370000 0001 2296 6998ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
| | - Alan K. Soper
- grid.76978.370000 0001 2296 6998ISIS Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
| | - Lorna Dougan
- grid.9909.90000 0004 1936 8403School of Physics and Astronomy, University of Leeds, Leeds, UK ,grid.9909.90000 0004 1936 8403Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
17
|
Halobacterium salinarum NRC-1 Sustains Voltage Production in a Dual-Chambered Closed Microbial Fuel Cell. ScientificWorldJournal 2022; 2022:3885745. [PMID: 36132437 PMCID: PMC9484973 DOI: 10.1155/2022/3885745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Sustained bioenergy production from organisms that thrive in high salinity, low oxygen, and low nutrition levels is useful in monitoring hypersaline polluted environments. Microbial fuel cell (MFC) studies utilizing single species halophiles under salt concentrations higher than 1 M and as a closed microbial system are limited. The current study aimed to establish baseline voltage, current, and power density from a dual-chambered MFC utilizing the halophile Halobacterium salinarum NRC-1. MFC performance was determined with two different electrode sizes (5 cm2 and 10 cm2), under oscillating and nonoscillating conditions, as well as in a stacked series. A closed dual-chamber MFC system of 100 mL capacity was devised with Halobacterium media (4.3 M salt concentration) as both anolyte and catholyte, with H. salinarum NRC-1 being the anodic organism. The MFC measured electrical output over 7, 14, 28, and 42 days. MFC output increased with 5 cm2 sized electrodes under nonoscillating (p < 0.0001) relative to oscillating conditions. However, under oscillating conditions, doubling the electrode size increased MFC output significantly (p = 0.01). The stacked series MFC, with an electrode size of 10 cm2, produced the highest power density (1.2672 mW/m2) over 14 days under oscillation. Our results highlight the potentiality of H. salinarum as a viable anodic organism to produce sustained voltage in a closed-MFC system.
Collapse
|
18
|
de la Haba RR, Antunes A, Hedlund BP. Editorial: Extremophiles: Microbial genomics and taxogenomics. Front Microbiol 2022; 13:984632. [PMID: 35983330 PMCID: PMC9379316 DOI: 10.3389/fmicb.2022.984632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
- *Correspondence: Rafael R. de la Haba
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, Macau SAR, China
- André Antunes
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
- Brian P. Hedlund
| |
Collapse
|
19
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|
20
|
Fungi are key players in extreme ecosystems. Trends Ecol Evol 2022; 37:517-528. [PMID: 35246323 DOI: 10.1016/j.tree.2022.02.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022]
Abstract
Extreme environments on Earth are typically devoid of macro life forms and are inhabited predominantly by highly adapted and specialized microorganisms. The discovery and persistence of these extremophiles provides tools to model how life arose on Earth and inform us on the limits of life. Fungi, in particular, are among the most extreme-tolerant organisms with highly versatile lifestyles and stunning ecological and morphological plasticity. Here, we overview the most notable examples of extremophilic and stress-tolerant fungi, highlighting their key roles in the functionality and balance of extreme ecosystems. The remarkable ability of fungi to tolerate and even thrive in the most extreme environments, which preclude most organisms, have reshaped current concepts regarding the limits of life on Earth.
Collapse
|
21
|
Metabolic Potential of Halophilic Filamentous Fungi—Current Perspective. Int J Mol Sci 2022; 23:ijms23084189. [PMID: 35457008 PMCID: PMC9030287 DOI: 10.3390/ijms23084189] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Salty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity. However, fungi are still the least understood organisms among halophiles, even though they have been shown to counteract these unfavorable conditions by producing multiple secondary metabolites with interesting properties or unique biomolecules as one of their survival strategies. In this review, we focused on biomolecules obtained from halophilic filamentous fungi such as enzymes, pigments, biosurfactants, and osmoprotectants.
Collapse
|
22
|
Sasaki S, Yamagishi A, Yoshimura Y, Enya K, Miyakawa A, Ohno S, Fujita K, Usui T, Limaye S. In situ bio/chemical characterization of Venus cloud particles using Life-signature Detection Microscope for Venus (Venus LDM). Can J Microbiol 2022; 68:413-425. [PMID: 35235433 DOI: 10.1139/cjm-2021-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the information about the size and shape of aerosols forming haze and the cloud layer of Venus is obtained from indirect inferences from nephelometers on probes and from analysis of the variation of polarization with the phase angle and the glory feature from images of Venus. Microscopic imaging of Venus' aerosols has been advocated recently. Direct measurements from a fluorescence microscope can provide information on the morphology, density, and biochemical characteristics of the particles; thus, the fluorescence microscope is attractive for the in situ particle characterization of Venus' cloud layer. Fluorescence imaging of Venus' cloud particles presents several challenges due to the sulfuric acid composition and the corrosive effects. In this article, we identify the challenges and describe our approach to overcoming them for a fluorescence microscope based on an in situ bio/chemical and physical characterization instrument for use in the clouds of Venus from a suitable aerial platform. We report that a pH adjustment using alkali was effective for obtaining fluorescence images, and that fluorescence attenuation was observed after the adjustment, even when the acidophile suspension in the concentrated sulfuric acid was used as a sample.
Collapse
Affiliation(s)
- Satoshi Sasaki
- Tokyo University of Technology, 13097, Hachioji, Japan, 192-0914;
| | - Akihiko Yamagishi
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | | | - Keigo Enya
- JAXA, 13557, Sagamihara, Kanagawa, Japan;
| | - Atsuo Miyakawa
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | - Sohsuke Ohno
- Chiba Institute of Technology, 12829, Chiba, Chiba, Japan;
| | | | | | - Sanjay Limaye
- University of Wisconsin-Madison, 5228, Madison, Wisconsin, United States;
| |
Collapse
|
23
|
dos Santos Varjão MT, Duarte AWF, Rosa LH, Alexandre-Moreira MS, de Queiroz AC. Leishmanicidal activity of fungal bioproducts: A systematic review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Banda JF, Zhang Q, Ma L, Pei L, Du Z, Hao C, Dong H. Both pH and salinity shape the microbial communities of the lakes in Badain Jaran Desert, NW China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148108. [PMID: 34126487 DOI: 10.1016/j.scitotenv.2021.148108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Badain Jaran Desert (BJD), characterized by extremely arid climate and tallest sand dunes in the world, is the second largest desert in China. Surprisingly, there are a large number of permanent lakes in this desert. At present, little is known about the composition and distribution of microbial communities in these desert lakes, which are an important bioresource and play a fundamental role in the elemental cycles of the lakes. In this study, the physicochemical characteristics and microbial communities of water samples from 15 lakes in BJD were comparatively investigated. The results showed that the lakes were rich in Na+, Cl-, CO32- and HCO3- while Ca2+ and Mg2+ were scarce, with pH 8.52-10.27 and salinity 1.05-478.70 g/L. Bacteria dominated exclusively in low saline lakes (salinity < 50 g/L) while archaea were predominant in hypersaline lakes (salinity > 250 g/L), which abundance increased along salinity gradient linearly. Genera Flavobacterium, Synechocystis and Roseobacter from phyla Bacteroidetes, Cyanobacteria, Alphaproteobacteria were the major members in low saline lakes whereas Halomonas, Aliidiomarina and Halopelagius from Gammaproteobacteria and Euryarchaeota were abundant in moderately saline lakes (salinity 50-250 g/L). The hypersaline lakes were predominated by extreme halophiles such as Halorubrum, Halohasta and Natronomonas from Euryarchaeota. The correlation among the microbes in the lakes was mainly positive, suggesting they can survive in the harsh environments through synergistic interactions. Statistical analyses indicated that physicochemical characteristics rather than spatial factors shaped the microbial communities in the desert lakes. The pH was the most important environmental factor controlling alpha diversity, while salinity was the major driver determining microbial community structure in BJD lakes. In contrast, geographic factors had no significant impact on the microbial community compositions.
Collapse
Affiliation(s)
- Joseph Frazer Banda
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Qin Zhang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Linqiang Ma
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Lixin Pei
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Zerui Du
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Hailiang Dong
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
25
|
Lecocq M, Groussin M, Gouy M, Brochier-Armanet C. The Molecular Determinants of Thermoadaptation: Methanococcales as a Case Study. Mol Biol Evol 2021; 38:1761-1776. [PMID: 33450027 PMCID: PMC8097290 DOI: 10.1093/molbev/msaa312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea. However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions, massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadaptation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic G + C content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model, we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of proteomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential substitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine, and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.
Collapse
Affiliation(s)
- Michel Lecocq
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Mathieu Groussin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Manolo Gouy
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, Villeurbanne, France
| |
Collapse
|
26
|
Nottebaum S, Weinzierl ROJ. Transcribing Genes the Hard Way: In Vitro Reconstitution of Nanoarchaeal RNA Polymerase Reveals Unusual Active Site Properties. Front Mol Biosci 2021; 8:669314. [PMID: 34141723 PMCID: PMC8204694 DOI: 10.3389/fmolb.2021.669314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Nanoarchaea represent a highly diverged archaeal phylum that displays many unusual biological features. The Nanoarchaeum equitans genome encodes a complete set of RNA polymerase (RNAP) subunits and basal factors. Several of the standard motifs in the active center contain radical substitutions that are normally expected to render the polymerase catalytically inactive. Here we show that, despite these unusual features, a RNAP reconstituted from recombinant Nanoarchaeum subunits is transcriptionally active. Using a sparse-matrix high-throughput screening method we identified an atypical stringent requirement for fluoride ions to maximize its activity under in vitro transcription conditions.
Collapse
Affiliation(s)
- Sven Nottebaum
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Orthomol Pharmazeutische Vertriebs GmbH, Langenfeld, Germany
| | | |
Collapse
|
27
|
Sunny JS, Nisha K, Natarajan A, Saleena LM. IND-enzymes: a repository for hydrolytic enzymes derived from thermophilic and psychrophilic bacterial species with potential industrial usage. Extremophiles 2021; 25:319-325. [PMID: 33961119 DOI: 10.1007/s00792-021-01231-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Biocatalysts provide many advantages over the traditional chemically assisted processes prevalent in industries. Consequently, the search for novel enzymes has increased over the years with a renewed interest in thermophilic and psychrophilic bacterial species. Enzymes or extremozymes extracted from such species have exhibited an affinity to extreme temperatures which is a prerequisite for many industrial applications. However, utilisation of these enzymes faces a major bottleneck. The distribution of sequence data associated with thermophiles and psychrophiles is overwhelming, spanning various databases and scientific literature. Based on more than 100 publications and genomes from over 300 thermophilic and psychrophilic bacterial species, we have constructed the database IND-Enzymes (indenzymes.srmist.edu.in). This database consists of over 20,120 nucleotide and protein sequences belonging to the hydrolytic enzyme class lipase, protease, esterase and amylase. Users can access over 100 published enzymes, 200 PDB structural data. Enzymes derived from genomes can be directly downloaded and users can also access the entire annotation data derived from species individually. Along with an alignment tool and python based pipelines, IND-Enzymes serves as the largest sequence repository for hydrolytic enzymes from thermophilic and psychrophilic bacterial species. This database showcases resources that are essential for protein engineering of hot-cold stable enzymes.
Collapse
Affiliation(s)
- Jithin S Sunny
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Room no. 508, SRM Nagar, Kattankulathur, 603203, Kanchipuram, TN, India
| | - Khairun Nisha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Room no. 508, SRM Nagar, Kattankulathur, 603203, Kanchipuram, TN, India
| | - Anuradha Natarajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Room no. 508, SRM Nagar, Kattankulathur, 603203, Kanchipuram, TN, India
| | - Lilly M Saleena
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Room no. 508, SRM Nagar, Kattankulathur, 603203, Kanchipuram, TN, India.
| |
Collapse
|
28
|
Marietou A. Sulfate reducing microorganisms in high temperature oil reservoirs. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:99-131. [PMID: 34353505 DOI: 10.1016/bs.aambs.2021.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High temperature reservoirs offer a window into the microbial life of the deep biosphere. Sulfate reducing microorganisms have been recovered from high temperature oil reservoirs around the globe and characterized using culture-dependent and culture-independent approaches. The activities of sulfate reducers contribute to reservoir souring and hydrocarbon degradation among other attracting considerable interest from the oil industry for the last 100 years. The extremes of temperature and pressure shape the activities and distribution of sulfate reducing bacteria and archaea in high temperature reservoirs. This chapter will attempt to summarize the key findings on the diversity and activities of sulfate reducing microorganisms in high temperature reservoirs.
Collapse
Affiliation(s)
- Angeliki Marietou
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
29
|
Compost Samples from Different Temperature Zones as a Model to Study Co-occurrence of Thermophilic and Psychrophilic Bacterial Population: a Metagenomics Approach. Curr Microbiol 2021; 78:1903-1913. [PMID: 33786643 DOI: 10.1007/s00284-021-02456-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
In this study, using a metagenomic approach, we explore the bacterial diversity of compost sites categorized based on their ambient temperatures. The two sites were Reckong Peo in the lower Himalayas and Tambaram in the southern region of the country, namely, CPR and CT. Following assembly of the raw reads from shotgun metagenomics, similarity hits were generated using NCBI BLAST + and SILVA database. A total of 1463 and 1483 species were annotated from CPR and CT. A species-level annotation was performed using a python-based literature search pipeline revealing their growth characteristics. Thermophiles Thermomonospora curvata and Thermus scotoductus were among the prominent species in CT. CPR too was seen abundant with Acidothermus cellulolyticus and Moorella thermoacetica, constituting 10% of the population. Nearly 3% of the identified species in the site CPR were psychrophilic. Although found higher in CPR, psychrophilic species were identified in CT too. Flavobacterium and Psychrobacter spp. were present in both sites without any significant changes in their relative distribution contrary to the thermophilic species abundance (z = - 4.3). Akin to the sequenced samples, database-derived metagenomes also showed similar distribution of thermophiles and psychrophiles. Identifying such peculiar prevalence of extremophiles can be central to understanding extended growth temperatures.
Collapse
|
30
|
Ando N, Barquera B, Bartlett DH, Boyd E, Burnim AA, Byer AS, Colman D, Gillilan RE, Gruebele M, Makhatadze G, Royer CA, Shock E, Wand AJ, Watkins MB. The Molecular Basis for Life in Extreme Environments. Annu Rev Biophys 2021; 50:343-372. [PMID: 33637008 DOI: 10.1146/annurev-biophys-100120-072804] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sampling and genomic efforts over the past decade have revealed an enormous quantity and diversity of life in Earth's extreme environments. This new knowledge of life on Earth poses the challenge of understandingits molecular basis in such inhospitable conditions, given that such conditions lead to loss of structure and of function in biomolecules from mesophiles. In this review, we discuss the physicochemical properties of extreme environments. We present the state of recent progress in extreme environmental genomics. We then present an overview of our current understanding of the biomolecular adaptation to extreme conditions. As our current and future understanding of biomolecular structure-function relationships in extremophiles requires methodologies adapted to extremes of pressure, temperature, and chemical composition, advances in instrumentation for probing biophysical properties under extreme conditions are presented. Finally, we briefly discuss possible future directions in extreme biophysics.
Collapse
Affiliation(s)
- Nozomi Ando
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Blanca Barquera
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | - Eric Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Audrey A Burnim
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Amanda S Byer
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Daniel Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA
| | - Richard E Gillilan
- Center for High Energy X-ray Sciences (CHEXS), Ithaca, New York 14853, USA
| | - Martin Gruebele
- Department of Chemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Department of Physics, University of Illinois, Urbana-Champaign, Illinois 61801, USA.,Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - George Makhatadze
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA;
| | - Everett Shock
- GEOPIG, School of Earth & Space Exploration, School of Molecular Sciences, Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, Arizona 85287, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77845, USA.,Department of Chemistry, Texas A&M University, College Station, Texas 77845, USA.,Department of Molecular & Cellular Medicine, Texas A&M University, College Station, Texas 77845, USA
| | - Maxwell B Watkins
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, New York 14853, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
31
|
La JW, Dhanasingh I, Jang H, Lee SH, Lee DW. Functional Characterization of Primordial Protein Repair Enzyme M38 Metallo-Peptidase From Fervidobacterium islandicum AW-1. Front Mol Biosci 2021; 7:600634. [PMID: 33392259 PMCID: PMC7774594 DOI: 10.3389/fmolb.2020.600634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/25/2020] [Indexed: 12/02/2022] Open
Abstract
The NA23_RS08100 gene of Fervidobacterium islandicum AW-1 encodes a keratin-degrading β-aspartyl peptidase (FiBAP) that is highly expressed under starvation conditions. Herein, we expressed the gene in Escherichia coli, purified the recombinant enzyme to homogeneity, and investigated its function. The 318 kDa recombinant FiBAP enzyme exhibited maximal activity at 80°C and pH 7.0 in the presence of Zn2+. Size-exclusion chromatography revealed that the native enzyme is an octamer comprising a tetramer of dimers; this was further supported by determination of its crystal structure at 2.6 Å resolution. Consistently, the structure of FiBAP revealed three additional salt bridges in each dimer, involving 12 ionic interactions that might contribute to its high thermostability. In addition, the co-crystal structure containing the substrate analog N-carbobenzoxy-β-Asp-Leu at 2.7 Å resolution revealed binuclear Zn2+-mediated substrate binding, suggesting that FiBAP is a hyperthermophilic type-I IadA, in accordance with sequence-based phylogenetic analysis. Indeed, complementation of a Leu auxotrophic E. coli mutant strain (ΔiadA and ΔleuB) with FiBAP enabled the mutant strain to grow on isoAsp-Leu peptides. Remarkably, LC-MS/MS analysis of soluble keratin hydrolysates revealed that FiBAP not only cleaves the C-terminus of isoAsp residues but also has a relatively broad substrate specificity toward α-peptide bonds. Moreover, heat shock-induced protein aggregates retarded bacterial growth, but expression of BAP alleviated the growth defect by degrading damaged proteins. Taken together, these results suggest that the viability of hyperthermophiles under stressful conditions may rely on the activity of BAP within cellular protein repair systems.
Collapse
Affiliation(s)
- Jae Won La
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Immanuel Dhanasingh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Hyeonha Jang
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
32
|
Picazo I, Etxebeste O, Requena E, Garzia A, Espeso EA. Defining the transcriptional responses of Aspergillus nidulans to cation/alkaline pH stress and the role of the transcription factor SltA. Microb Genom 2020; 6:mgen000415. [PMID: 32735212 PMCID: PMC7641419 DOI: 10.1099/mgen.0.000415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/12/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi have developed the ability to overcome extreme growth conditions and thrive in hostile environments. The model fungus Aspergillus nidulans tolerates, for example, ambient alkalinity up to pH 10 or molar concentrations of multiple cations. The ability to grow under alkaline pH or saline stress depends on the effective function of at least three regulatory pathways mediated by the zinc-finger transcription factor PacC, which mediates the ambient pH regulatory pathway, the calcineurin-dependent CrzA and the cation homeostasis responsive factor SltA. Using RNA sequencing, we determined the effect of external pH alkalinization or sodium stress on gene expression. The data show that each condition triggers transcriptional responses with a low degree of overlap. By sequencing the transcriptomes of the null mutant, the role of SltA in the above-mentioned homeostasis mechanisms was also studied. The results show that the transcriptional role of SltA is wider than initially expected and implies, for example, the positive control of the PacC-dependent ambient pH regulatory pathway. Overall, our data strongly suggest that the stress response pathways in fungi include some common but mostly exclusive constituents, and that there is a hierarchical relationship among the main regulators of stress response, with SltA controlling pacC expression, at least in A. nidulans.
Collapse
Affiliation(s)
- Irene Picazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Oier Etxebeste
- Laboratory of Biology, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018 San Sebastian, Spain
| | - Elena Requena
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Present address: Department of Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Ctra de La Coruña Km 7, 28040 Madrid, Spain
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, Rockefeller University, New York, USA
| | - Eduardo Antonio Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
33
|
Martínez-Espinosa RM. Microorganisms and Their Metabolic Capabilities in the Context of the Biogeochemical Nitrogen Cycle at Extreme Environments. Int J Mol Sci 2020; 21:ijms21124228. [PMID: 32545812 PMCID: PMC7349289 DOI: 10.3390/ijms21124228] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/23/2022] Open
Abstract
Extreme microorganisms (extremophile) are organisms that inhabit environments characterized by inhospitable parameters for most live beings (extreme temperatures and pH values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism, cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology. Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature; thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric, terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the Archaea domain. Potential implications of these microbes in global warming and nitrogen balance, as well as their biotechnological applications are also discussed.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; ; Tel.: +34-965903400 (ext. 1258)
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|