1
|
Gómez-García A, Acuña Jiménez DA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, Bolzani VDS, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Valencia Sánchez HA, Cortés Hernández HF, Mosquera Martinez OM, Medina-Franco JL. Latin American Natural Product Database (LANaPDB): An Update. J Chem Inf Model 2024; 64:8495-8509. [PMID: 39503579 PMCID: PMC11600509 DOI: 10.1021/acs.jcim.4c01560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024]
Abstract
Natural product (NP) databases are crucial tools in computer-aided drug design (CADD). Over the past decade, there has been a worldwide effort to assemble information regarding natural products (NPs) isolated and characterized in certain geographical regions. In 2023, it was published LANaPDB, and to our knowledge, this is the first attempt to gather and standardize all the NP databases of Latin America. Herein, we present and analyze in detail the contents of an updated version of LANaPDB, which includes 619 newly added compounds from Colombia, Costa Rica, and Mexico. The present version of LANaPDB has a total of 13 578 compounds, coming from ten databases of seven Latin American countries. A chemoinformatic characterization of LANaPDB was carried out, which includes the structural classification of the compounds, calculation of six physicochemical properties of pharmaceutical interest, and visualization of the chemical space by employing and comparing two different fingerprints (MACCS keys (166-bit) and Morgan2 (2048-bit)). Furthermore, additional analyses were made, and valuable information not included in the first version of LANaPDB was added, which includes structural diversity, molecular complexity, synthetic feasibility, commercial availability, and reported and predicted biological activity. In addition, the LANaPDB compounds were cross-referenced to two of the largest public chemical compound databases annotated with biological activity: ChEMBL and PubChem.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - Daniel A Acuña Jiménez
- CBio3
Laboratory, School of Chemistry, University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
| | - William J Zamora
- CBio3
Laboratory, School of Chemistry, University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Laboratory
of Computational Toxicology and Artificial Intelligence (LaToxCIA),
Biological Testing Laboratory (LEBi), University
of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Advanced
Computing Lab (CNCA), National High Technology
Center (CeNAT), Pavas, San José 1174-1200, Costa Rica
| | - Haruna L Barazorda-Ccahuana
- Computational
Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Miguel Á. Chávez-Fumagalli
- Computational
Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa María, Arequipa 04000, Peru
| | - Marilia Valli
- School of
Pharmaceutical Sciences of Ribeirao Preto (FCFRP), University of São Paulo (USP), Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirao Preto 14040-903, SP, Brazil
| | - Adriano D Andricopulo
- Laboratory
of Medicinal and Computational Chemistry (LQMC), Centre for Research
and Innovation in Biodiversity and Drug Discovery (CIBFar), São
Carlos Institute of Physics (IFSC), University
of São Paulo (USP), Av. João Dagnone, 1100, São
Carlos 13563-120, SP, Brazil
| | - Vanderlan da S Bolzani
- Nuclei
of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE),
Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara 14800-900, SP, Brazil
| | - Dionisio A Olmedo
- Center
for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College
of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De
Fabrega, Panama City 3366, Panama
| | - Pablo N Solís
- Center
for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College
of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De
Fabrega, Panama City 3366, Panama
| | - Marvin J Núñez
- Natural
Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de
Julio, San Salvador 01101, El Salvador
| | - Johny R Rodríguez Pérez
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
- GIEPRONAL
Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia
| | - Hoover A Valencia Sánchez
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Héctor F Cortés Hernández
- GIFAMol
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - Oscar M Mosquera Martinez
- GBPN
Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia
| | - José L Medina-Franco
- DIFACQUIM
Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Gómez-García A, Prinz AK, Jiménez DAA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, da S Bolzani V, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Sánchez HAV, Cortés Hernández HF, Mosquera Martinez OM, Koch O, Medina-Franco JL. Updating and profiling the natural product-likeness of Latin American compound libraries. Mol Inform 2024; 43:e202400052. [PMID: 38994633 DOI: 10.1002/minf.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 07/13/2024]
Abstract
Compound databases of natural products play a crucial role in drug discovery and development projects and have implications in other areas, such as food chemical research, ecology and metabolomics. Recently, we put together the first version of the Latin American Natural Product database (LANaPDB) as a collective effort of researchers from six countries to ensemble a public and representative library of natural products in a geographical region with a large biodiversity. The present work aims to conduct a comparative and extensive profiling of the natural product-likeness of an updated version of LANaPDB and the individual ten compound databases that form part of LANaPDB. The natural product-likeness profile of the Latin American compound databases is contrasted with the profile of other major natural product databases in the public domain and a set of small-molecule drugs approved for clinical use. As part of the extensive characterization, we employed several chemoinformatics metrics of natural product likeness. The results of this study will capture the attention of the global community engaged in natural product databases, not only in Latin America but across the world.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510, Mexico
| | - Ann-Kathrin Prinz
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Daniel A Acuña Jiménez
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
| | - William J Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José, 11501-2060, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José, 1174-1200, Costa Rica
| | - Haruna L Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa, 04000, Peru
| | - Miguel Á Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa, 04000, Peru
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos, SP, 13563-120, Brazil
| | - Vanderlan da S Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Dionisio A Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City, 3366, Panama
| | - Pablo N Solís
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City, 3366, Panama
| | - Marvin J Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de Julio, San Salvador, 01101, El Salvador
| | - Johny R Rodríguez Pérez
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas, 661001, Colombia
| | - Hoover A Valencia Sánchez
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Héctor F Cortés Hernández
- GIFAMOL Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Oscar M Mosquera Martinez
- GBPN Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira, 660003, Colombia
| | - Oliver Koch
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510, Mexico
| |
Collapse
|
3
|
Thomson TM. On the importance for drug discovery of a transnational Latin American database of natural compound structures. Front Pharmacol 2023; 14:1207559. [PMID: 37426821 PMCID: PMC10324963 DOI: 10.3389/fphar.2023.1207559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023] Open
Affiliation(s)
- Timothy M. Thomson
- Institute for Molecular Biology (IBMB-CSIC), Barcelona, Spain
- CIBER de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
Bajorath J, Chávez-Hernández AL, Duran-Frigola M, Fernández-de Gortari E, Gasteiger J, López-López E, Maggiora GM, Medina-Franco JL, Méndez-Lucio O, Mestres J, Miranda-Quintana RA, Oprea TI, Plisson F, Prieto-Martínez FD, Rodríguez-Pérez R, Rondón-Villarreal P, Saldívar-Gonzalez FI, Sánchez-Cruz N, Valli M. Chemoinformatics and artificial intelligence colloquium: progress and challenges in developing bioactive compounds. J Cheminform 2022; 14:82. [PMID: 36461094 PMCID: PMC9716667 DOI: 10.1186/s13321-022-00661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
We report the main conclusions of the first Chemoinformatics and Artificial Intelligence Colloquium, Mexico City, June 15-17, 2022. Fifteen lectures were presented during a virtual public event with speakers from industry, academia, and non-for-profit organizations. Twelve hundred and ninety students and academics from more than 60 countries. During the meeting, applications, challenges, and opportunities in drug discovery, de novo drug design, ADME-Tox (absorption, distribution, metabolism, excretion and toxicity) property predictions, organic chemistry, peptides, and antibiotic resistance were discussed. The program along with the recordings of all sessions are freely available at https://www.difacquim.com/english/events/2022-colloquium/ .
Collapse
Affiliation(s)
- Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, 53113, Bonn, Germany
| | - Ana L Chávez-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Miquel Duran-Frigola
- Ersilia Open Source Initiative, Cambridge, UK
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Eli Fernández-de Gortari
- Nanosafety Laboratory, International Iberian Nanotechnology Laboratory, 4715-330, Braga, Portugal
| | - Johann Gasteiger
- Computer-Chemie-Centrum, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
- Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), 07360, Mexico City, Mexico
| | | | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | | | - Jordi Mestres
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), 08028, Barcelona, Catalonia, Spain
- Research Group on Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute and University Pompeu Fabra, Parc de Recerca Biomedica (PRBB), 08003, Barcelona, Catalonia, Spain
| | | | - Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at Gothenburg University, 40530, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Roivant Discovery Sciences, Inc., 451 D Street, Boston, MA, 02210, USA
| | - Fabien Plisson
- Department of Biotechnology and Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Irapuato Unit, 36824, Irapuato, Gto, Mexico
| | | | | | - Paola Rondón-Villarreal
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Calle 70 No. 55-210, 680003, Santander, Bucaramanga, Colombia
| | - Fernanda I Saldívar-Gonzalez
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Norberto Sánchez-Cruz
- Chemotargets SL, Baldiri Reixac 4, Parc Cientific de Barcelona (PCB), 08028, Barcelona, Catalonia, Spain
- Instituto de Química, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz Km. 4.5, Yucatán, 97357, Ucú, Mexico
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University-UNESP, Araraquara, Brazil
| |
Collapse
|
5
|
Saldívar-González FI, Aldas-Bulos VD, Medina-Franco JL, Plisson F. Natural product drug discovery in the artificial intelligence era. Chem Sci 2022; 13:1526-1546. [PMID: 35282622 PMCID: PMC8827052 DOI: 10.1039/d1sc04471k] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
Collapse
Affiliation(s)
- F I Saldívar-González
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - V D Aldas-Bulos
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| | - J L Medina-Franco
- DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
| | - F Plisson
- CONACYT - Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico
| |
Collapse
|
6
|
Chávez-Hernández AL, Juárez-Mercado KE, Saldívar-González FI, Medina-Franco JL. Towards the De Novo Design of HIV-1 Protease Inhibitors Based on Natural Products. Biomolecules 2021; 11:1805. [PMID: 34944448 PMCID: PMC8698858 DOI: 10.3390/biom11121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 01/14/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) continues to be a public health problem. In 2020, 680,000 people died from HIV-related causes, and 1.5 million people were infected. Antiretrovirals are a way to control HIV infection but not to cure AIDS. As such, effective treatment must be developed to control AIDS. Developing a drug is not an easy task, and there is an enormous amount of work and economic resources invested. For this reason, it is highly convenient to employ computer-aided drug design methods, which can help generate and identify novel molecules. Using the de novo design, novel molecules can be developed using fragments as building blocks. In this work, we develop a virtual focused compound library of HIV-1 viral protease inhibitors from natural product fragments. Natural products are characterized by a large diversity of functional groups, many sp3 atoms, and chiral centers. Pseudo-natural products are a combination of natural products fragments that keep the desired structural characteristics from different natural products. An interactive version of chemical space visualization of virtual compounds focused on HIV-1 viral protease inhibitors from natural product fragments is freely available in the supplementary material.
Collapse
Affiliation(s)
| | | | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (K.E.J.-M.); (F.I.S.-G.)
| |
Collapse
|
7
|
Dunn TB, Seabra GM, Kim TD, Juárez-Mercado KE, Li C, Medina-Franco JL, Miranda-Quintana RA. Diversity and Chemical Library Networks of Large Data Sets. J Chem Inf Model 2021; 62:2186-2201. [PMID: 34723537 DOI: 10.1021/acs.jcim.1c01013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The quantification of chemical diversity has many applications in drug discovery, organic chemistry, food, and natural product chemistry, to name a few. As the size of the chemical space is expanding rapidly, it is imperative to develop efficient methods to quantify the diversity of large and ultralarge chemical libraries and visualize their mutual relationships in chemical space. Herein, we show an application of our recently introduced extended similarity indices to measure the fingerprint-based diversity of 19 chemical libraries typically used in drug discovery and natural products research with over 18 million compounds. Based on this concept, we introduce the Chemical Library Networks (CLNs) as a general and efficient framework to represent visually the chemical space of large chemical libraries providing a global perspective of the relation between the libraries. For the 19 compound libraries explored in this work, it was found that the (extended) Tanimoto index offers the best description of extended similarity in combination with RDKit fingerprints. CLNs are general and can be explored with any structure representation and similarity coefficient for large chemical libraries.
Collapse
Affiliation(s)
- Timothy B Dunn
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Gustavo M Seabra
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - Taewon David Kim
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - K Eurídice Juárez-Mercado
- DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Chenglong Li
- Department of Medicinal Chemistry, University of Florida, Gainesville, Florida 32610, United States.,Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ramón Alain Miranda-Quintana
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States.,Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
8
|
Ntie-Kang F, Telukunta KK, Fobofou SAT, Chukwudi Osamor V, Egieyeh SA, Valli M, Djoumbou-Feunang Y, Sorokina M, Stork C, Mathai N, Zierep P, Chávez-Hernández AL, Duran-Frigola M, Babiaka SB, Tematio Fouedjou R, Eni DB, Akame S, Arreyetta-Bawak AB, Ebob OT, Metuge JA, Bekono BD, Isa MA, Onuku R, Shadrack DM, Musyoka TM, Patil VM, van der Hooft JJJ, da Silva Bolzani V, Medina-Franco JL, Kirchmair J, Weber T, Tastan Bishop Ö, Medema MH, Wessjohann LA, Ludwig-Müller J. Computational Applications in Secondary Metabolite Discovery (CAiSMD): an online workshop. J Cheminform 2021; 13:64. [PMID: 34488889 PMCID: PMC8419829 DOI: 10.1186/s13321-021-00546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 11/12/2022] Open
Abstract
We report the major conclusions of the online open-access workshop "Computational Applications in Secondary Metabolite Discovery (CAiSMD)" that took place from 08 to 10 March 2021. Invited speakers from academia and industry and about 200 registered participants from five continents (Africa, Asia, Europe, South America, and North America) took part in the workshop. The workshop highlighted the potential applications of computational methodologies in the search for secondary metabolites (SMs) or natural products (NPs) as potential drugs and drug leads. During 3 days, the participants of this online workshop received an overview of modern computer-based approaches for exploring NP discovery in the "omics" age. The invited experts gave keynote lectures, trained participants in hands-on sessions, and held round table discussions. This was followed by oral presentations with much interaction between the speakers and the audience. Selected applicants (early-career scientists) were offered the opportunity to give oral presentations (15 min) and present posters in the form of flash presentations (5 min) upon submission of an abstract. The final program available on the workshop website ( https://caismd.indiayouth.info/ ) comprised of 4 keynote lectures (KLs), 12 oral presentations (OPs), 2 round table discussions (RTDs), and 5 hands-on sessions (HSs). This meeting report also references internet resources for computational biology in the area of secondary metabolites that are of use outside of the workshop areas and will constitute a long-term valuable source for the community. The workshop concluded with an online survey form to be completed by speakers and participants for the goal of improving any subsequent editions.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Kiran K. Telukunta
- Tarunavadaanenasaha Muktbharatonnayana Samstha Foundation, Hyderabad, India
| | - Serge A. T. Fobofou
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstrasse 1, 38106 Braunschweig, Germany
| | - Victor Chukwudi Osamor
- Department of Computer and Information Sciences, Colege of Science and Technology, Covenant University, Km. 10 Idiroko Rd, Ogun Ota, Nigeria
| | - Samuel A. Egieyeh
- School of Pharmacy, University of the Western Cape, Cape Town, 7535 South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town, 7535 South Africa
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University–UNESP, Araraquara, Brazil
| | | | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Conrad Stork
- Center for Bioinformatics, Universität Hamburg, 20146 Hamburg, Germany
| | - Neann Mathai
- Department of Chemistry and Computational Biology Unit (CBU), University of Bergen, 5020 Bergen, Norway
| | - Paul Zierep
- Pharmaceutical Bioinformatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Ana L. Chávez-Hernández
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miquel Duran-Frigola
- Ersilia Open Source Initiative, Cambridge, UK
- Joint IRB-BSC-CRG Programme in Computational Biology, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia Spain
| | - Smith B. Babiaka
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | | | - Donatus B. Eni
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Simeon Akame
- Department of Immunology, School of Health Sciences, Catholic University of Central Africa, BP 7871, Yaoundé, Cameroon
| | | | - Oyere T. Ebob
- Department of Chemistry, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Jonathan A. Metuge
- Department of Biochemistry and Molecular Biology, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Boris D. Bekono
- Department of Physics, Ecole Normale Supérieure, University of Yaoundé I, BP. 47, Yaoundé, Cameroon
| | - Mustafa A. Isa
- Bioinformatics and Computational Biology Lab, Department of Microbiology, Faculty of Sciences, University of Maiduguri, P.M.B. 1069, Maiduguri, Borno State Nigeria
| | - Raphael Onuku
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Daniel M. Shadrack
- Department of Chemistry, St. John’s University of Tanzania, P. O. Box 47, Dodoma, Tanzania
| | - Thommas M. Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140 South Africa
| | - Vaishali M. Patil
- Computer Aided Drug Design Lab, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206 India
| | | | - Vanderlan da Silva Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, Sao Paulo State University–UNESP, Araraquara, Brazil
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda, 6140 South Africa
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Ludger A. Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, 06120 Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv), Puschstraße 4, 04103 Leipzig, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| |
Collapse
|
9
|
Diallo BN, Glenister M, Musyoka TM, Lobb K, Tastan Bishop Ö. SANCDB: an update on South African natural compounds and their readily available analogs. J Cheminform 2021; 13:37. [PMID: 33952332 PMCID: PMC8097257 DOI: 10.1186/s13321-021-00514-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND South African Natural Compounds Database (SANCDB; https://sancdb.rubi.ru.ac.za/ ) is the sole and a fully referenced database of natural chemical compounds of South African biodiversity. It is freely available, and since its inception in 2015, the database has become an important resource to several studies. Its content has been: used as training data for machine learning models; incorporated to larger databases; and utilized in drug discovery studies for hit identifications. DESCRIPTION Here, we report the updated version of SANCDB. The new version includes 412 additional compounds that have been reported since 2015, giving a total of 1012 compounds in the database. Further, although natural products (NPs) are an important source of unique scaffolds, they have a major drawback due to their complex structure resulting in low synthetic feasibility in the laboratory. With this in mind, SANCDB is, now, updated to provide direct links to commercially available analogs from two major chemical databases namely Mcule and MolPort. To our knowledge, this feature is not available in other NP databases. Additionally, for easier access to information by users, the database and website interface were updated. The compounds are now downloadable in many different chemical formats. CONCLUSIONS The drug discovery process relies heavily on NPs due to their unique chemical organization. This has inspired the establishment of numerous NP chemical databases. With the emergence of newer chemoinformatic technologies, existing chemical databases require constant updates to facilitate information accessibility and integration by users. Besides increasing the NPs compound content, the updated SANCDB allows users to access the individual compounds (if available) or their analogs from commercial databases seamlessly.
Collapse
Affiliation(s)
- Bakary N'tji Diallo
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Michael Glenister
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Thommas M Musyoka
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Kevin Lobb
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.,Department of Chemistry, Rhodes University, Makhanda/Grahamstown, 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, 6140, South Africa.
| |
Collapse
|
10
|
Núñez MJ, Díaz-Eufracio BI, Medina-Franco JL, Olmedo DA. Latin American databases of natural products: biodiversity and drug discovery against SARS-CoV-2. RSC Adv 2021; 11:16051-16064. [PMID: 35481202 PMCID: PMC9030473 DOI: 10.1039/d1ra01507a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 01/22/2023] Open
Abstract
In this study, we evaluated 3444 Latin American natural products using cheminformatic tools. We also characterized 196 compounds for the first time from the flora of El Salvador that were compared with the databases of secondary metabolites from Brazil, Mexico, and Panama, and 42 969 compounds (natural, semi-synthetic, synthetic) from different regions of the world. The overall analysis was performed using drug-likeness properties, molecular fingerprints of different designs, two parameters similarity, molecular scaffolds, and molecular complexity metrics. It was found that, in general, Salvadoran natural products have a large diversity based on fingerprints. Simultaneously, those belonging to Mexico and Panama present the greatest diversity of scaffolds compared to the other databases. This study provided evidence of the high structural complexity that Latin America's natural products have as a benchmark. The COVID-19 pandemic has had a negative effect on a global level. Thus, in the search for substances that may influence the coronavirus life cycle, the secondary metabolites from El Salvador and Panama were evaluated by docking against the endoribonuclease NSP-15, an enzyme involved in the SARS CoV-2 viral replication. We propose in this study three natural products as potential inhibitors of NSP-15.
Collapse
Affiliation(s)
- Marvin J Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador San Salvador El Salvador
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, National Autonomous University of Mexico Mexico City 04510 Mexico
| | - Dionisio A Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University de Panama Panama
- Sistema Nacional de Investigación (SNI), SENACYT Panamá
| |
Collapse
|
11
|
Medina-Franco JL, Saldívar-González FI. Cheminformatics to Characterize Pharmacologically Active Natural Products. Biomolecules 2020; 10:E1566. [PMID: 33213003 PMCID: PMC7698493 DOI: 10.3390/biom10111566] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/19/2022] Open
Abstract
Natural products have a significant role in drug discovery. Natural products have distinctive chemical structures that have contributed to identifying and developing drugs for different therapeutic areas. Moreover, natural products are significant sources of inspiration or starting points to develop new therapeutic agents. Natural products such as peptides and macrocycles, and other compounds with unique features represent attractive sources to address complex diseases. Computational approaches that use chemoinformatics and molecular modeling methods contribute to speed up natural product-based drug discovery. Several research groups have recently used computational methodologies to organize data, interpret results, generate and test hypotheses, filter large chemical databases before the experimental screening, and design experiments. This review discusses a broad range of chemoinformatics applications to support natural product-based drug discovery. We emphasize profiling natural product data sets in terms of diversity; complexity; acid/base; absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties; and fragment analysis. Novel techniques for the visual representation of the chemical space are also discussed.
Collapse
Affiliation(s)
- José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | | |
Collapse
|
12
|
Chávez-Hernández AL, Sánchez-Cruz N, Medina-Franco JL. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Biomolecules 2020; 10:E1518. [PMID: 33172012 PMCID: PMC7694623 DOI: 10.3390/biom10111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.
Collapse
Affiliation(s)
| | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (N.S.-C.)
| |
Collapse
|
13
|
L Medina-Franco J. Towards a unified Latin American Natural Products Database: LANaPD. Future Sci OA 2020; 6:FSO468. [PMID: 32983559 PMCID: PMC7491008 DOI: 10.2144/fsoa-2020-0068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/14/2020] [Indexed: 12/05/2022] Open
Abstract
Around the world, the number of compound databases of natural products in the public domain is rising. This is in line with the increasing synergistic combination of natural product research and chemoinformatics. Toward this global endeavor, countries in Latin America are assembling, curating, and analyzing the contents and diversity of natural products available in their geographical regions. In this manuscript we collect and analyze the efforts that countries in Latin America have made so far to build natural product databases. We further encourage the scientific community in particular in Latin America, to continue their efforts to building quality natural product databases and, whenever possible, to make them publicly accessible. It is proposed that all compound collections could be assembled into a unified resource called LANaPD: Latin American Natural Products Database. Opportunities and challenges to build, distribute and maintain LANaPD are also discussed.
Collapse
Affiliation(s)
- José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|