1
|
Ibrahim M, Thanigaimani S, Singh TP, Morris D, Golledge J. Systematic review and Meta-Analysis of Mendelian randomisation analyses of Abdominal aortic aneurysms. IJC HEART & VASCULATURE 2021; 35:100836. [PMID: 34286064 PMCID: PMC8274287 DOI: 10.1016/j.ijcha.2021.100836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Mendelian randomisation (MR) has been suggested to be able to overcome biases of observational studies, but no meta-analysis is available on MR studies on abdominal aortic aneurysm (AAA). This systematic review and Meta-analysis examined the evidence of causal risk factors for AAA identified in MR studies. METHODS Publicly available databases were systematically searched for MR studies that reported any causal risk factors for AAA diagnosis. Meta-analyses were performed using random effect models and reported as odds ratio (OR) and 95% confidence intervals (CI). Study quality was assessed using a modified version of Strengthening the Reporting of Mendelian Randomisation Studies (STROBE-MR) guidelines. RESULTS Sixteen MR studies involving 34,050 patients with AAA and 2,205,894 controls were included. Meta-analyses suggested that one standard deviation increase in high density lipoprotein (HDL) significantly reduced (OR: 0.66, 95% CI: 0.61, 0.72) and one standard deviation increase in low density lipoprotein (LDL) significantly increased the risk (OR: 1.68, 95%, CI: 1.55, 1.82) of AAA. One standard deviation increase in triglycerides did not significantly increase the risk of AAA (OR: 1.21, 95% CI: 0.86, 1.71). Quality assessment suggested that ten and five studies were of low and moderate risk of bias respectively, with one study considered as high risk of bias. CONCLUSION This meta-analysis suggests LDL and HDL are positive and negative casual risk factors for AAA.
Collapse
Affiliation(s)
- Muhammad Ibrahim
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Shivshankar Thanigaimani
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Tejas P Singh
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Dylan Morris
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease (QRC-PVD), College of Medicine and Dentistry, James Cook University, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Lee KH, Jeong ES, Jang G, Na JR, Park S, Kang WS, Kim E, Choi H, Kim JS, Kim S. Unripe Rubus coreanus Miquel Extract Containing Ellagic Acid Regulates AMPK, SREBP-2, HMGCR, and INSIG-1 Signaling and Cholesterol Metabolism In Vitro and In Vivo. Nutrients 2020; 12:nu12030610. [PMID: 32110925 PMCID: PMC7146129 DOI: 10.3390/nu12030610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/15/2020] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Our previous study demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) has hypo-cholesterolemic and anti-obesity activity. However, the molecular mechanisms of its effects are poorly characterized. We hypothesized that 5-uRCK and one of its major bioactive compounds, ellagic acid, decrease cellular and plasma cholesterol levels. Thus, we investigated the hypocholesterolemic activity and mechanism of 5-uRCK in both hepatocytes and a high-cholesterol diet (HCD)-induced rat model. Cholesterol in the liver and serum was significantly reduced by 5-uRCK and ellagic acid. The hepatic activities of HMG-CoA and CETP were reduced, and the hepatic activity of LCAT was increased by both 5-uRCK extract and ellagic acid, which also caused histological improvements. The MDA content in the aorta and serum was significantly decreased after oral administration of 5-uRCK or ellagic acid. Further immunoblotting analysis showed that AMPK phosphorylation in the liver was induced by 5-uRCK and ellagic acid, which activated AMPK, inhibiting the activity of HMGCR by inhibitory phosphorylation. In contrast, 5-uRCK and ellagic acid suppressed the nuclear translocation and activation of SREBP-2, which is a key transcription factor in cholesterol biosynthesis. In conclusion, our results suggest that 5-uRCK and its bioactive compound, ellagic acid, are useful alternative therapeutic agents to regulate blood cholesterol.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sunoh Kim
- Correspondence: ; Tel.: +82-62-528-2201; Fax: +82-62-528-2202
| |
Collapse
|
3
|
|
4
|
Ghosh GC, Bhadra R, Ghosh RK, Banerjee K, Gupta A. RVX 208: A novel BET protein inhibitor, role as an inducer of apo A-I/HDL and beyond. Cardiovasc Ther 2018; 35. [PMID: 28423226 DOI: 10.1111/1755-5922.12265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/17/2016] [Accepted: 04/13/2017] [Indexed: 12/28/2022] Open
Abstract
Low-density cholesterol (LDL) has been the prime target of currently available lipid-lowering therapies although current research is expanding the focus beyond LDL lowering and has included high-density cholesterol (HDL) also as the target. Bromo and extra-terminal (BET) proteins are implicated in the regulation of transcription of several regulatory genes and regulation of proinflammatory pathways. As atherosclerosis is an inflammatory pathway and studies showed that BET inhibition has a role in inhibiting inflammation, the concept of BET inhibition came in the field of atherosclerosis. RVX 208 is a novel, orally active, BET protein inhibitor and the only BET inhibitor currently available in the field of atherosclerosis. RVX 208 acts primarily by increasing apo A-I (apolipoprotein A-I) and HDL levels. RVX 208 has a novel action of increasing larger, more cardio-protective HDL particles. Post hoc analysis of Phase II trials also showed that RVX 208 reduced major adverse cardiovascular events (MACE) in treated patients, over and above that of apo A-I/HDL increasing action. This MACE reducing actions of RVX 208 were largely due to its novel anti-inflammatory actions. Currently, a phase III trial, BETonMACE, is recruiting patients to look for the effects of RVX 208 in patients with increased risk of atherosclerotic cardiovascular disease. So BET inhibitors act in multiple ways to inhibit and modulate atherosclerosis and would be an emerging and potential option in the management of multifactorial disease like coronary artery disease by inhibiting a single substrate. But we need long-term phase III trial data's to look for effects on real-world patients.
Collapse
Affiliation(s)
- Gopal C Ghosh
- Department of Cardiology, Christian Medical College, Vellore, India
| | - Rajarshi Bhadra
- Department of Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | - Raktim K Ghosh
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| | | | - Anjan Gupta
- Department of Cardiovascular Medicine, St. Vincent Charity Medical Center, A Teaching Hospital of Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
|
6
|
Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res 2017; 120:219-225. [PMID: 28408313 DOI: 10.1016/j.phrs.2017.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/20/2017] [Accepted: 04/07/2017] [Indexed: 11/24/2022]
Abstract
Hypercholesterolemia is one of the major risk factors for the development of cardiovascular disease. Atherosclerosis resulting from hypercholesterolemia causes many serious cardiovascular diseases. Statins are generally accepted as a treatment of choice for lowering low-density lipoprotein (LDL) cholesterol, which reduces coronary heart disease morbidity and mortality. Since statin use can be associated with muscle problems and other adverse symptoms, non-adherence and discontinuation of statin therapy often leads to inadequate control of plasma cholesterol levels and increased cardiovascular risk. Moreover, there is compelling evidence on the presence of still considerable residual cardiovascular risk in statin-treated patients. Ezetimibe improves cholesterol-lowering efficacy and provides mild additional cardiovascular protection when combined with statin treatment. Despite a favorable safety profile compared to statins, ezetimibe-induced cholesterol-lowering is modest when used alone. Hence, there is a critical need to identity additional effective hypolipidemic agents that can be used either in combination with statins, or alone, if statins are not tolerated. Thus, hypolipidemic agents such as proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, apolipoprotein B-100 antisense oligonucleotides, cholesteryl ester transfer protein (CETP) inhibitors, and microsomal triglyceride transfer protein (MTTP) inhibitors, as well as yeast polysaccharides (beta-glucans and mannans) and compounds derived from natural sources (nutraceuticals) such as glucomannans, plant sterols, berberine, and red yeast rice are being used. In this review, we will discuss hypercholesterolemia, its impact on the development of cardiovascular disease (CVD), and the use of yeast polysaccharides, various nutraceuticals, and several therapeutic agents not derived from 'natural' sources, to treat hypercholesterolemia.
Collapse
|
7
|
Yamashita S, Matsuzawa Y. Re-evaluation of cholesteryl ester transfer protein function in atherosclerosis based upon genetics and pharmacological manipulation. Curr Opin Lipidol 2016; 27:459-72. [PMID: 27454452 DOI: 10.1097/mol.0000000000000332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW To re-evaluate the functions of plasma cholesteryl ester transfer protein (CETP) in atherosclerosis based upon recent findings from human genetics and pharmacological CETP manipulation. RECENT FINDINGS CETP is involved in the transfer of cholesteryl ester from HDL to apolipoprotein B-containing lipoproteins, a key step of reverse cholesterol transport (RCT). CETP inhibitors have been developed to raise serum HDL-cholesterol (HDL-C) levels and reduce cardiovascular events. However, outcome studies of three CETP inhibitors (torcetrapib, dalcetrapib and evacetrapib) were prematurely terminated because of increased mortality or futility despite marked increases in HDL-cholesterol and decreases in LDL-cholesterol except for dalcetrapib. Patients with CETP deficiency show remarkable changes in HDL and LDL and are sometimes accompanied by atherosclerotic cardiovascular diseases. Recent prospective epidemiological studies demonstrated atheroprotective roles of CETP. CETP inhibition induces formation of small dense LDL and possibly dysfunctional HDL and downregulates hepatic scavenger receptor class B type I (SR-BI). Therefore, CETP inhibitors may interrupt LDL receptor and SR-BI-mediated cholesterol delivery back to the liver. SUMMARY For future drug development, the opposite strategy, namely enhancers of RCT via CETP and SR-BI activation as well as the inducers of apolipoprotein A-I or HDL production might be a better approach rather than delaying HDL metabolism by inhibiting a main stream of RCT in vivo.
Collapse
Affiliation(s)
- Shizuya Yamashita
- aDepartment of Community Medicine bDepartment of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita cRinku General Medical Center, Izumisano dSumitomo Hospital, Kita-ku, Osaka, Japan
| | | |
Collapse
|
8
|
Short-term isocaloric fructose restriction lowers apoC-III levels and yields less atherogenic lipoprotein profiles in children with obesity and metabolic syndrome. Atherosclerosis 2016; 253:171-177. [PMID: 27451002 DOI: 10.1016/j.atherosclerosis.2016.06.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Dietary fructose may play a role in the pathogenesis of metabolic syndrome (MetS). In a recently published study of obese children with MetS, we showed that isocaloric fructose restriction reduced fasting triglyceride (TG) and LDL-cholesterol (LDL-C). In these ancillary analyses, we tested the hypothesis that these effects were also accompanied by improved quantitative and qualitative changes in LDL and HDL subclasses and their apolipoproteins; as well as change in VLDL, particularly apoC-III. METHODS Obese children with MetS (n = 37) consumed a diet that matched self-reported macronutrient composition for nine days, with the exception that dietary fructose was reduced from 11.7 ± 4.0% to 3.8 ± 0.5% of daily calories and substituted with glucose (in starch). Participants underwent fasting biochemical analyses on Days 0 and 10. HDL and LDL subclasses were analyzed using the Lipoprint HDL and LDL subfraction analysis systems from Quantimetrix. RESULTS Significant reductions in apoB (78 ± 24 vs. 66 ± 24 mg/dl) apoC-III (8.7 ± 3.5 vs. 6.5 ± 2.6 mg/dl) and apoE (4.6 ± 2.3 vs. 3.6 ± 1.1 mg/dl), all p < 0.001) were observed. LDL size increased by 0.87 Å (p = 0.008). Small dense LDL was present in 25% of our cohort and decreased by 68% (p = 0.04). Small HDL decreased by 2.7% (p < 0.001) and large HDL increased by 2.4% (p = 0.04). The TG/HDL-C ratio decreased from 3.1 ± 2.5 to 2.4 ± 1.4 (p = 0.02). These changes in fasting lipid profiles correlated with changes in insulin sensitivity. CONCLUSIONS Isocaloric fructose restriction for 9 days improved lipoprotein markers of CVD risk in children with obesity and MetS. The most dramatic reduction was seen for apoC-III, which has been associated with atherogenic hypertriglyceridemia.
Collapse
|
9
|
Baumgartner C, Brandl J, Münch G, Ungerer M. Rabbit models to study atherosclerosis and its complications – Transgenic vascular protein expression in vivo. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:131-41. [DOI: 10.1016/j.pbiomolbio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
|
10
|
Kajal A, Kishore L, Kaur N, Gollen R, Singh R. Therapeutic agents for the management of atherosclerosis from herbal sources. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2016. [DOI: 10.1016/j.bjbas.2016.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Quintão ECR. The controversy over the use of cholesteryl ester transfer protein inhibitors: is there some light at the end of the tunnel? Eur J Clin Invest 2016; 46:581-9. [PMID: 26992444 DOI: 10.1111/eci.12626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/16/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND According to epidemiological studies, there is no clear relationship between the plasma cholesteryl ester transfer protein (CETP) concentration and the development of atherosclerosis in human populations. Although some studies suggest that increased CETP activity relates to undesirable profiles of plasma lipoproteins, promoting an anti-atherogenic plasma lipoprotein profile by drugs that inhibit CETP has not succeeded in preventing atherosclerosis in humans. MATERIALS AND METHODS This review describes 28 investigations in human populations dealing with plasma CETP, 11 in mice that express human CETP and seven in animals (six in rabbits and one in mice) in which plasma CETP activity was inhibited by drugs. RESULTS Present review shows that models in mice expressing human CETP are not illuminating because they report increase as well reduction of atherosclerosis. However, investigations in rabbits and mice that develop severe hypercholesterolaemia clearly indicate that impairment of the plasma CETP activity elicits protection against the development of atherosclerosis; in all of these experiments are attained substantial reductions of the atherogenic lipoproteins, namely, plasma apoB containing lipoproteins. CONCLUSION These models are strong indicators that the benefit in preventing atherosclerosis should be earned in cases of hyperlipidemia by CETP inhibitors.
Collapse
Affiliation(s)
- Eder C R Quintão
- Internal Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
12
|
Kosmas CE, DeJesus E, Rosario D, Vittorio TJ. CETP Inhibition: Past Failures and Future Hopes. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:37-42. [PMID: 26997876 PMCID: PMC4790583 DOI: 10.4137/cmc.s32667] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The atheroprotective role of high-density lipoprotein cholesterol (HDL-C) in cardiovascular disease has been unequivocally established, and epidemiological data have clearly demonstrated a strong inverse relationship between HDL-C levels and the risk of cardiovascular events, which is independent of the low-density lipoprotein cholesterol (LDL-C) levels. Thus, it would be logical to hypothesize that raising HDL-C might potentially lead to a reduction of cardiovascular risk. Cholesteryl ester transfer protein (CETP) promotes the transfer of cholesteryl esters from HDL to very low-density lipoprotein and LDL. Therefore, CETP inhibition raises HDL-C levels and decreases LDL-C levels. The first trials with CETP inhibitors failed to show a reduction in cardiovascular events. However, newer CETP inhibitors with more favorable effects on lipids are presently being tested in clinical trials with the hope that their use may lead to a reduction in cardiovascular risk. This review aims to provide the current evidence regarding CETP inhibition, as well as the clinical and scientific data pertaining to the new CETP inhibitors in development.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Mount Sinai Hospital, New York, NY, USA
| | - Eddy DeJesus
- Department of Medicine, Bronx-Lebanon Hospital Center, New York, NY, USA
| | - Digna Rosario
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Timothy J Vittorio
- Center for Advanced Cardiac Therapeutics, St. Francis Hospital - The Heart Center®, Roslyn, NY, USA
| |
Collapse
|
13
|
Tragante V, Asselbergs FW, Swerdlow DI, Palmer TM, Moore JH, de Bakker PIW, Keating BJ, Holmes MV. Harnessing publicly available genetic data to prioritize lipid modifying therapeutic targets for prevention of coronary heart disease based on dysglycemic risk. Hum Genet 2016; 135:453-467. [PMID: 26946290 PMCID: PMC4835528 DOI: 10.1007/s00439-016-1647-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023]
Abstract
Therapeutic interventions that lower LDL-cholesterol effectively reduce the risk of coronary artery disease (CAD). However, statins, the most widely prescribed LDL-cholesterol lowering drugs, increase diabetes risk. We used genome-wide association study (GWAS) data in the public domain to investigate the relationship of LDL-C and diabetes and identify loci encoding potential drug targets for LDL-cholesterol modification without causing dysglycemia. We obtained summary-level GWAS data for LDL-C from GLGC, glycemic traits from MAGIC, diabetes from DIAGRAM and CAD from CARDIoGRAMplusC4D consortia. Mendelian randomization analyses identified a one standard deviation (SD) increase in LDL-C caused an increased risk of CAD (odds ratio [OR] 1.63 (95 % confidence interval [CI] 1.55, 1.71), which was not influenced by removing SNPs associated with diabetes. LDL-C/CAD-associated SNPs showed consistent effect directions (binomial P = 6.85 × 10−5). Conversely, a 1-SD increase in LDL-C was causally protective of diabetes (OR 0.86; 95 % CI 0.81, 0.91), however LDL-cholesterol/diabetes-associated SNPs did not show consistent effect directions (binomial P = 0.15). HMGCR, our positive control, associated with LDL-C, CAD and a glycemic composite (derived from GWAS meta-analysis of four glycemic traits and diabetes). In contrast, PCSK9, APOB, LPA, CETP, PLG, NPC1L1 and ALDH2 were identified as “druggable” loci that alter LDL-C and risk of CAD without displaying associations with dysglycemia. In conclusion, LDL-C increases the risk of CAD and the relationship is independent of any association of LDL-C with diabetes. Loci that encode targets of emerging LDL-C lowering drugs do not associate with dysglycemia, and this provides provisional evidence that new LDL-C lowering drugs (such as PCSK9 inhibitors) may not influence risk of diabetes.
Collapse
Affiliation(s)
- Vinicius Tragante
- Department of Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Heart and Lungs, University Medical Center Utrecht, Heidelberglaan 100, 3584CX, Utrecht, The Netherlands. .,Institute of Cardiovascular Science, University College London, 222 Euston Road, London, NW1 2DA, UK. .,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands.
| | - Daniel I Swerdlow
- Institute of Cardiovascular Science, University College London, 222 Euston Road, London, NW1 2DA, UK.,Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Tom M Palmer
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Jason H Moore
- Department of Biostatistics and Epidemiology, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104-6021, USA
| | - Paul I W de Bakker
- Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Brendan J Keating
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.,Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael V Holmes
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA. .,Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA. .,Clinical Trials Services Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, Richard Doll Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LF, UK.
| |
Collapse
|
14
|
Miller NE. Cholesteryl ester transfer protein: ace of spades, queen of hearts, or the joker? Front Pharmacol 2015; 6:145. [PMID: 26236237 PMCID: PMC4500898 DOI: 10.3389/fphar.2015.00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/29/2015] [Indexed: 11/13/2022] Open
|