1
|
Radojičić O, Dobrijević Z, Robajac D, Gligorijević N, Mandić Marković V, Miković Ž, Nedić O. Gestational Diabetes is Associated with an Increased Expression of miR-27a in Peripheral Blood Mononuclear Cells. Mol Diagn Ther 2022; 26:421-435. [PMID: 35578107 DOI: 10.1007/s40291-022-00591-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Dysregulation of microRNA-based mechanisms is associated with various human pathologies, including gestational diabetes mellitus (GDM), suggesting they may be potential diagnostic and/or prognostic biomarkers of GDM. METHODS The expression of miR-340-5p, miR-27a-3p and miR-222-3p in peripheral blood mononuclear cells (PBMCs) obtained from patients with GDM (n = 42) and healthy controls (n = 34) were evaluated, together with their correlation to the clinical parameters of participants and their newborns. Expression of the selected microRNAs was quantified by quantitative real-time polymerase chain reaction (qPCR), after reverse transcription with microRNA-specific stem-loop primers. RESULTS The expression of miR-27a-3p was significantly higher in patients with GDM than in controls (p = 0.036), whereas no significant difference between groups was found for the other two tested microRNAs. The expression level of miR-27a-3p in GDM patients was found to negatively correlate with the number of erythrocytes, concentration of haemoglobin, haematocrit, and low- and high-density lipoprotein (LDL/HDL) ratio, and positively with the concentration of glycated haemoglobin (HbA1c). In the case of miR-222-3p, a negative correlation between its expression and the concentration of cholesterol, LDL and LDL/HDL ratio was found only in healthy pregnant women. The expression level of miR-340-5p negatively correlated with erythrocyte count, haemoglobin concentration and haematocrit in GDM patients, as well as with the concentration of cholesterol, LDL and LDL/HDL ratio in healthy women. CONCLUSIONS The results obtained illustrate the potential of PBMC-derived microRNA miR-27a-3p to serve as a diagnostic biomarker of GDM. On the other hand, MiR-27a and miR-340 may help in assessing the metabolic status relevant for pregnancy.
Collapse
Affiliation(s)
- Ognjen Radojičić
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Nikola Gligorijević
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| | - Vesna Mandić Marković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Lang CCJ, Lloyd M, Alyacoubi S, Rahman S, Pickering O, Underwood T, Breininger SP. The Use of miRNAs in Predicting Response to Neoadjuvant Therapy in Oesophageal Cancer. Cancers (Basel) 2022; 14:1171. [PMID: 35267476 PMCID: PMC8909542 DOI: 10.3390/cancers14051171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Oesophageal cancer (OC) is the ninth most common cancer worldwide. Patients receive neoadjuvant therapy (NAT) as standard of care, but less than 20% of patients with oesophageal adenocarcinoma (OAC) or a third of oesophageal squamous cell carcinoma (OSCC) patients, obtain a clinically meaningful response. Developing a method of determining a patient's response to NAT before treatment will allow rational treatment decisions to be made, thus improving patient outcome and quality of life. (1) Background: To determine the use and accuracy of microRNAs as biomarkers of response to NAT in patients with OAC or OSCC. (2) Methods: MEDLINE, EMBASE, Web of Science and the Cochrane library were searched to identify studies investigating microRNAs in treatment naïve biopsies to predict response to NAT in OC patients. (3) Results: A panel of 20 microRNAs were identified as predictors of good or poor response to NAT, from 15 studies. Specifically, miR-99b, miR-451 and miR-505 showed the strongest ability to predict response in OAC patients along with miR-193b in OSCC patients. (4) Conclusions: MicroRNAs are valuable biomarkers of response to NAT in OC. Research is needed to understand the effects different types of chemotherapy and chemoradiotherapy have on the predictive value of microRNAs; studies also require greater standardization in how response is defined.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stella P. Breininger
- Cancer Research UK Center, Faculty of Medicine, School of Cancer Science, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (C.C.J.L.); (M.L.); (S.A.); (S.R.); (O.P.); (T.U.)
| |
Collapse
|
3
|
So BYF, Yap DYH, Chan TM. MicroRNAs in Lupus Nephritis-Role in Disease Pathogenesis and Clinical Applications. Int J Mol Sci 2021; 22:10737. [PMID: 34639078 PMCID: PMC8509214 DOI: 10.3390/ijms221910737] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) are non-coding small RNAs that act as epigenetic modulators to regulate the protein levels of target mRNAs without modifying the genetic sequences. The role of miRs in the pathogenesis of lupus nephritis (LN) is increasingly recognized and highly complex. Altered levels of different miRs are observed in the blood, urine and kidney tissues of murine LN models and LN patients. Accumulating evidence suggests that these miRs can modulate immune cells and various key inflammatory pathways, and their perturbations contribute to the aberrant immune response in LN. The dysregulation of miRs in different resident renal cells and urinary exosomes can also lead to abnormal renal cell proliferation, inflammation and kidney fibrosis in LN. While miRs may hold promise in various clinical applications in LN patients, there are still many potential limitations and safety concerns for their use. Further studies are worthwhile to examine the clinical utility of miRs in the diagnosis, disease activity monitoring, prognostication and treatment of LN.
Collapse
Affiliation(s)
| | - Desmond Y. H. Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong; (B.Y.F.S.); (T.M.C.)
| | | |
Collapse
|
4
|
Kolarz B, Ciesla M, Dryglewska M, Rosenthal AK, Majdan M. Hypermethylation of the miR-155 gene in the whole blood and decreased plasma level of miR-155 in rheumatoid arthritis. PLoS One 2020; 15:e0233897. [PMID: 32484820 PMCID: PMC7266293 DOI: 10.1371/journal.pone.0233897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/14/2020] [Indexed: 11/18/2022] Open
Abstract
Objectives miR-155 plays a critical role in the inflammatory process and in diseases such as rheumatoid arthritis (RA). miR155 gene expression is regulated by its gene promoter region CpG island methylation. Previous studies have shown inconsistent changes in circulating levels of mir-155 in RA patients. The aims of our study were to evaluate miR-155 levels in plasma, to investigate its gene methylation level, and to correlate these levels with RA disease activity. Methods One hundred and twenty-five patients with RA, and 30 age and sex-matched healthy controls (HC) were enrolled. Whole blood and plasma samples were collected and stored at -80°C until analysis. DAS28 score at the time of the blood draw was used to assess RA disease activity. The methylation status of miR-155 host gene was determined in whole blood by quantitative real-time methylation-specific PCR (qPCR). miR-155 expression levels were evaluated by quantitative reverse transcription PCR. Results We found significantly lower circulating miR155 levels in RA patients compared to HC. Interestingly, the miR-155 gene methylation level was significantly higher in RA patients than in HC. miR-155 levels did not correlate with ACPA or RF positivity or disease activity. Conclusions We show here higher miR-155 methylation in whole blood and lower plasma miR155 expression in RA patients in comparison to HC. The evaluation of miR-155 host gene methylation status or miR155 plasma level might be a potentially useful marker in RA determination.
Collapse
Affiliation(s)
- Bogdan Kolarz
- College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
- * E-mail:
| | - Marek Ciesla
- College of Medical Sciences, University of Rzeszow, Rzeszow, Poland
| | - Magdalena Dryglewska
- Department of Rheumatology and Connective Tissue Disease, Medical University of Lublin, Lublin, Poland
| | - Ann K. Rosenthal
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Wauwatosa, WI, United States of America
| | - Maria Majdan
- Department of Rheumatology and Connective Tissue Disease, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
O'Sullivan MP, Looney AM, Moloney GM, Finder M, Hallberg B, Clarke G, Boylan GB, Murray DM. Validation of Altered Umbilical Cord Blood MicroRNA Expression in Neonatal Hypoxic-Ischemic Encephalopathy. JAMA Neurol 2020; 76:333-341. [PMID: 30592487 DOI: 10.1001/jamaneurol.2018.4182] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Importance Neonatal hypoxic-ischemic encephalopathy (HIE) remains a significant cause of neurologic disability. Identifying infants suitable for therapeutic hypothermia (TH) within a narrow therapeutic time is difficult. No single robust biochemical marker is available to clinicians. Objective To assess the ability of a panel of candidate microRNA (miRNA) to evaluate the development and severity of encephalopathy following perinatal asphyxia (PA). Design, Setting, and Participants This validation study included 2 cohorts. For the discovery cohort, full-term infants with PA were enrolled at birth to the Biomarkers in Hypoxic-Ischemic Encephalopathy (BiHiVE1) study (2009-2011) in Cork, Ireland. Encephalopathy grade was defined using early electroencephalogram and Sarnat score (n = 68). The BiHiVE1 cohort also enrolled healthy control infants (n = 22). For the validation cohort, the BiHiVE2 multicenter study (2013-2015), based in Cork, Ireland (7500 live births per annum), and Karolinska Huddinge, Sweden (4400 live births per annum), recruited infants with PA along with healthy control infants to validate findings from BiHiVE1 using identical recruitment criteria (n = 80). The experimental design was formulated prior to recruitment, and analysis was conducted from June 2016 to March 2017. Main Outcomes and Measures Alterations in umbilical cord whole-blood miRNA expression. Results From 170 neonates, 160 were included in the final analysis. The BiHiVE1 cohort included 87 infants (21 control infants, 39 infants with PA, and 27 infants with HIE), and BiHiVE2 included 73 infants (control [n = 22], PA [n = 26], and HIE [n = 25]). The BiHiVE1 and BiHiVE2 had a median age of 40 weeks (interquartile range [IQR], 39-41 weeks) and 40 weeks (IQR, 39-41 weeks), respectively, and included 56 boys and 31 girls and 45 boys and 28 girls, respectively. In BiHiVE1, 12 candidate miRNAs were identified, and 7 of these miRNAs were chosen for validation in BiHiVE2. The BiHiVE2 cohort showed consistent alteration of 3 miRNAs; miR-374a-5p was decreased in infants diagnosed as having HIE compared with healthy control infants (median relative quantification, 0.38; IQR, 0.17-0.77 vs 0.95; IQR, 0.68-1.19; P = .009), miR-376c-3p was decreased in infants with PA compared with healthy control infants (median, 0.42; IQR, 0.21-0.61 vs 0.90; IQR, 0.70-1.30; P = .004), and mir-181b-5p was decreased in infants eligible for TH (median, 0.27; IQR, 0.14-1.41) vs 1.18; IQR, 0.70-2.05; P = .02). Conclusions and Relevance Altered miRNA expression was detected in umbilical cord blood of neonates with PA and HIE. These miRNA could assist diagnostic markers for early detection of HIE and PA at birth.
Collapse
Affiliation(s)
- Marc Paul O'Sullivan
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Crumlin, Dublin, Ireland
| | - Ann Marie Looney
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Mikael Finder
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Boubou Hallberg
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Gerard Clarke
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.,APC Microbiome Institute, Cork, Ireland
| | - Geraldine B Boylan
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- The Irish Centre for Fetal and Neonatal Translational Research, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
6
|
Alunni-Fabbroni M, Majunke L, Trapp EK, Tzschaschel M, Mahner S, Fasching PA, Fehm T, Schneeweiss A, Beck T, Lorenz R, Friedl TWP, Janni W, Rack B. Whole blood microRNAs as potential biomarkers in post-operative early breast cancer patients. BMC Cancer 2018; 18:141. [PMID: 29409452 PMCID: PMC5802058 DOI: 10.1186/s12885-018-4020-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) are considered promising cancer biomarkers, showing high reliability, sensitivity and stability. Our study aimed to identify associations between whole blood miRNA profiles, presence of circulating tumor cells (CTCs) and clinical outcome in post-operative early breast cancer patients (EBC) to assess the utility of miRNAs as prognostic markers in this setting. METHOD A total of 48 post-operative patients, recruited in frame of the SUCCESS A trial, were included in this retrospective study and tested with a panel of 8 miRNAs (miR-10b, -19a, - 21, - 22, -20a, - 127, - 155, -200b). Additional 17 female healthy donors with no previous history of cancer were included in the study as negative controls. Blood samples were collected at different time points (pre-adjuvant therapy, post-adjuvant therapy, 2 years follow up), total RNA was extracted and the relative concentration of each miRNA was measured by quantitative PCR and compared in patients stratified on blood collection time or CTC detection. Furthermore, we compared miRNA profiles of patients, for each time point separately, and healthy donors. CTCs were visualized and quantified with immunocytochemistry analysis. Data were analyzed using non-parametric statistical tests. RESULTS In our experimental system, miR-19a, miR-22 and miR-127 showed the most promising results, differentiating patients at different time points and from healthy controls, while miR-20a, miR-21 and miR-200b did not show any difference among the different groups. miR-10b and miR-155 were never detectable in our experimental system. With respect to patients' clinical characteristics, we found a significant correlation between miR-200b and lymph node status and between miR-20a and tumor type. Furthermore, miR-127 correlated with the presence of CTCs. Finally, we found a borderline significance between Progression Free Survival and miR-19a levels. CONCLUSIONS This pilot study suggests that profiling whole blood miRNAs could help to better stratify post-operative EBC patients without any sign of metastasis to prevent later relapse or metastatic events.
Collapse
Affiliation(s)
- Marianna Alunni-Fabbroni
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany. .,Laboratory for Experimental Radiology, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, Marchioninistr. 15, 81377, Munich, Germany.
| | - Leonie Majunke
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - Elisabeth K Trapp
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.,Department of Gynecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - Marie Tzschaschel
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.,Department of Gynecology and Obstetrics, Medical University of Graz, Graz, Austria
| | - Sven Mahner
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany
| | - Tanja Fehm
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas Schneeweiss
- Department of Gynecology and Obstetrics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Beck
- RoMed Klinikum Rosenheim, Rosenheim, Germany
| | - Ralf Lorenz
- Gemeinschaftspraxis Lorenz / Hecker / Wesche, Braunschweig, Germany
| | - Thomas W P Friedl
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Brigitte Rack
- Department of Gynecology and Obstetrics, University Hospital, LMU Munich, Munich, Germany.,Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | | |
Collapse
|
7
|
Anaparti V, Smolik I, Meng X, Spicer V, Mookherjee N, El-Gabalawy H. Whole blood microRNA expression pattern differentiates patients with rheumatoid arthritis, their seropositive first-degree relatives, and healthy unrelated control subjects. Arthritis Res Ther 2017; 19:249. [PMID: 29126434 PMCID: PMC5681796 DOI: 10.1186/s13075-017-1459-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Background Epigenetic mechanisms can integrate gene-environment interactions that mediate disease transition from preclinical to clinically overt rheumatoid arthritis (RA). To better understand their role, we evaluated microRNA (miRNA, miR) expression profile in indigenous North American patients with RA who were positive for anticitrullinated protein antibodies; their autoantibody-positive, asymptomatic first-degree relatives (FDRs); and disease-free healthy control subjects (HCs). Methods Total RNA was isolated from whole blood samples obtained from HC (n = 12), patients with RA (n = 18), and FDRs (n = 12). Expression of 35 selected relevant miRNAs, as well as associated downstream messenger RNA (mRNA) targets of miR-103a-3p, was determined by qRT-PCR. Results Whole blood expression profiling identified significantly differential miRNA expression in patients with RA (13 miRNAs) and FDRs (10 miRNAs) compared with HCs. Among these, expression of miR-103a-3p, miR-155, miR-146a-5p, and miR-26b-3p was significantly upregulated, whereas miR-346 was significantly downregulated, in both study groups. Expression of miR-103a-3p was consistently elevated in FDRs at two time points 1 year apart. We also confirmed increased miR-103a-3p expression in peripheral blood mononuclear cells from patients with RA compared with HCs. Predicted target analyses of differentially expressed miRNAs in patients with RA and FDRs showed overlapping biological networks. Consistent with these curated networks, mRNA expression of DICER1, AGO1, CREB1, DAPK1, and TP53 was downregulated significantly with miR-103a-3p expression in FDRs. Conclusions We highlight systematically altered circulating miRNA expression in at-risk FDRs prior to RA onset, a profile they shared with patients with RA. Prominently consistent miR-103a-3p expression indicates its utility as a prognostic biomarker for preclinical RA while highlighting biological pathways important for transition to clinically detectable disease. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1459-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vidyanand Anaparti
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 799, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Rheumatic Diseases Unit, University of Manitoba, Winnipeg, MB, Canada
| | - Irene Smolik
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 799, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada.,Rheumatic Diseases Unit, University of Manitoba, Winnipeg, MB, Canada.,Division of Rheumatology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xiaobo Meng
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 799, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Rheumatic Diseases Unit, University of Manitoba, Winnipeg, MB, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
| | - Neeloffer Mookherjee
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 799, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada.,Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada.,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hani El-Gabalawy
- Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room 799, 715 McDermot Avenue, Winnipeg, MB, R3E 3P4, Canada. .,Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada. .,Rheumatic Diseases Unit, University of Manitoba, Winnipeg, MB, Canada. .,Division of Rheumatology, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
8
|
Hruskova V, Jandova R, Vernerova L, Mann H, Pecha O, Prajzlerova K, Pavelka K, Vencovsky J, Filkova M, Senolt L. MicroRNA-125b: association with disease activity and the treatment response of patients with early rheumatoid arthritis. Arthritis Res Ther 2016; 18:124. [PMID: 27255643 PMCID: PMC4890522 DOI: 10.1186/s13075-016-1023-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small RNAs that regulate gene expression by targeting mRNA. It was proved that some miRNAs are significantly deregulated in rheumatoid arthritis (RA). MicroRNA-125b negatively regulates expression of TNF-α, which plays a crucial role in RA pathogenesis. The aim of this study was to determine the treatment outcome of patients with early RA based on the expression of circulating and cellular miR-125b. METHODS Total RNA was isolated from the plasma and peripheral blood mononuclear cells (PBMCs) of 58 patients with early RA before and three months after treatment initiation and of 54 age- and sex-matched healthy controls (HC). The expression of miR-125b was measured by TaqMan quantitative PCR. The treatment responders were defined as patients achieving remission or low disease activity (28-joint count disease activity score (DAS28) <3.2). Receiver operating characteristic (ROC) curve and stepwise backward multivariable logistic regression analyses of miR-125b expression were used to predict the disease outcome at three and six months after initiation of treatment. RESULTS The expression of miR-125b in the PBMCs and plasma of treatment-naïve early RA patients was significantly lower than that of HC and increased significantly after three months of treatment, particularly in responders. However, only the cellular expression of miR-125b was inversely correlated with disease activity. MiR-125b expression in PBMCs was higher in responders than in non-responders after three months (p = 0.042). Using ROC analysis, the cellular expression of miR-125b, but not the disease activity at baseline, predicted the treatment response after three months of therapy (area under the curve 0.652 (95 % CI 0.510 to 0.793); p = 0.048). CONCLUSION The expression of miR-125b in PBMCs of treatment-naïve patients may present a novel biomarker for monitoring the treatment outcome during the early phase of RA.
Collapse
Affiliation(s)
- Veronika Hruskova
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic. .,Faculty of Science Charles University in Prague, Prague, Czech Republic.
| | - Romana Jandova
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Lucia Vernerova
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Herman Mann
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | | | - Klara Prajzlerova
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Jiri Vencovsky
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Maria Filkova
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| | - Ladislav Senolt
- Institute of Rheumatology and Department of Rheumatology, First Faculty of Medicine, Charles University in Prague, Na Slupi 4, 12850, Prague 2, Czech Republic
| |
Collapse
|