1
|
Gartland N, Fishwick D, Coleman A, Davies K, Hartwig A, Johnson S, van Tongeren M. Transmission and control of SARS-CoV-2 on ground public transport: A rapid review of the literature up to May 2021. JOURNAL OF TRANSPORT & HEALTH 2022; 26:101356. [PMID: 35261878 PMCID: PMC8894738 DOI: 10.1016/j.jth.2022.101356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
Background During a pandemic, public transport is strategically important for keeping the country going and getting people where they need to be. The essential nature of public transport puts into focus the risk of transmission of SARS-CoV-2 in this sector; rapid and diverse work has been done to attempt to understand how transmission happens in this context and what factors influence risk. Objectives This review aimed to provide a narrative overview of the literature assessing transmission, or potential for transmission, of SARS-CoV-2 on ground-based public transport, as well as studies assessing the effectiveness of control measures on public transport during the early part of the pandemic (up to May 2021). Methods An electronic search was conducted using Web of Science, Ovid, the Cochrane Library, ProQuest, Pubmed, and the WHO global COVID database. Searches were run between December 2020 and May 2021. Results The search strategy identified 734 papers, of which 28 papers met the inclusion criteria for the review; 10 papers assessed transmission of SARS-CoV-2, 11 assessed control measures, and seven assessed levels of contamination. Eleven papers were based on modelling approaches; 17 studies were original studies reporting empirical COVID-19 data. Conclusions The literature is heterogeneous, and there are challenges for measurement of transmission in this setting. There is evidence for transmission in certain cases, and mixed evidence for the presence of viral RNA in transport settings; there is also evidence for some reduction of risk through mitigation. However, the routes of transmission and key factors contributing to transmission of SARS-CoV-2 on public transport were not clear during the early stage of the pandemic. Gaps in understanding are discussed and six key questions for future research have been posed. Further exploration of transmission factors and effectiveness of mitigation strategies is required in order to support decision making.
Collapse
Affiliation(s)
- Nicola Gartland
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - David Fishwick
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Anna Coleman
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Karen Davies
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Angelique Hartwig
- Alliance Manchester Business School, University of Manchester, Manchester, United Kingdom
| | - Sheena Johnson
- Alliance Manchester Business School, University of Manchester, Manchester, United Kingdom
| | - Martie van Tongeren
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Jimenez JL, Marr LC, Randall K, Ewing ET, Tufekci Z, Greenhalgh T, Tellier R, Tang JW, Li Y, Morawska L, Mesiano‐Crookston J, Fisman D, Hegarty O, Dancer SJ, Bluyssen PM, Buonanno G, Loomans MGLC, Bahnfleth WP, Yao M, Sekhar C, Wargocki P, Melikov AK, Prather KA. What were the historical reasons for the resistance to recognizing airborne transmission during the COVID-19 pandemic? INDOOR AIR 2022; 32:e13070. [PMID: 36040283 PMCID: PMC9538841 DOI: 10.1111/ina.13070] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 05/05/2023]
Abstract
The question of whether SARS-CoV-2 is mainly transmitted by droplets or aerosols has been highly controversial. We sought to explain this controversy through a historical analysis of transmission research in other diseases. For most of human history, the dominant paradigm was that many diseases were carried by the air, often over long distances and in a phantasmagorical way. This miasmatic paradigm was challenged in the mid to late 19th century with the rise of germ theory, and as diseases such as cholera, puerperal fever, and malaria were found to actually transmit in other ways. Motivated by his views on the importance of contact/droplet infection, and the resistance he encountered from the remaining influence of miasma theory, prominent public health official Charles Chapin in 1910 helped initiate a successful paradigm shift, deeming airborne transmission most unlikely. This new paradigm became dominant. However, the lack of understanding of aerosols led to systematic errors in the interpretation of research evidence on transmission pathways. For the next five decades, airborne transmission was considered of negligible or minor importance for all major respiratory diseases, until a demonstration of airborne transmission of tuberculosis (which had been mistakenly thought to be transmitted by droplets) in 1962. The contact/droplet paradigm remained dominant, and only a few diseases were widely accepted as airborne before COVID-19: those that were clearly transmitted to people not in the same room. The acceleration of interdisciplinary research inspired by the COVID-19 pandemic has shown that airborne transmission is a major mode of transmission for this disease, and is likely to be significant for many respiratory infectious diseases.
Collapse
Affiliation(s)
- Jose L. Jimenez
- Department of Chemistry and Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderColoradoUSA
| | - Linsey C. Marr
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | | | - Zeynep Tufekci
- School of JournalismColumbia UniversityNew YorkNew YorkUSA
| | - Trish Greenhalgh
- Department of Primary Care Health SciencesMedical Sciences DivisionUniversity of OxfordOxfordUK
| | | | - Julian W. Tang
- Department of Respiratory SciencesUniversity of LeicesterLeicesterUK
| | - Yuguo Li
- Department of Mechanical EngineeringUniversity of Hong KongHong KongChina
| | - Lidia Morawska
- International Laboratory for Air Quality and HeathQueensland University of TechnologyBrisbaneQueenslandAustralia
| | | | - David Fisman
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Orla Hegarty
- School of Architecture, Planning & Environmental PolicyUniversity College DublinDublinIreland
| | - Stephanie J. Dancer
- Department of MicrobiologyHairmyres Hospital, Glasgow, and Edinburgh Napier UniversityGlasgowUK
| | - Philomena M. Bluyssen
- Faculty of Architecture and the Built EnvironmentDelft University of TechnologyDelftThe Netherlands
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
| | - Marcel G. L. C. Loomans
- Department of the Built EnvironmentEindhoven University of Technology (TU/e)EindhovenThe Netherlands
| | - William P. Bahnfleth
- Department of Architectural EngineeringThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Maosheng Yao
- College of Environmental Sciences and EngineeringPeking UniversityBeijingChina
| | - Chandra Sekhar
- Department of the Built EnvironmentNational University of SingaporeSingaporeSingapore
| | - Pawel Wargocki
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Arsen K. Melikov
- Department of Civil EngineeringTechnical University of DenmarkLyngbyDenmark
| | - Kimberly A. Prather
- Scripps Institution of OceanographyUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Greenhalgh T, Ozbilgin M, Contandriopoulos D. Orthodoxy, illusio, and playing the scientific game: a Bourdieusian analysis of infection control science in the COVID-19 pandemic. Wellcome Open Res 2021; 6:126. [PMID: 34632088 PMCID: PMC8474098 DOI: 10.12688/wellcomeopenres.16855.3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Background:
Scientific and policy bodies’ failure to acknowledge and act on the evidence base for airborne transmission of SARS-CoV-2 in a timely way is both a mystery and a scandal. In this study, we applied theories from Bourdieu to address the question, “How was a partial and partisan scientific account of SARS-CoV-2 transmission constructed and maintained, leading to widespread imposition of infection control policies which de-emphasised airborne transmission?”.
Methods:
From one international case study (the World Health Organisation) and three national ones (UK, Canada and Japan), we selected a purposive sample of publicly available texts including scientific evidence summaries, guidelines, policy documents, public announcements, and social media postings. To analyse these, we applied Bourdieusian concepts of field,
doxa, scientific capital,
illusio, and game-playing. We explored in particular the links between scientific capital, vested interests, and policy influence.
Results:
Three fields—political, state (policy and regulatory), and scientific—were particularly relevant to our analysis. Political and policy actors at international, national, and regional level aligned—predominantly though not invariably—with medical scientific orthodoxy which promoted the droplet theory of transmission and considered aerosol transmission unproven or of doubtful relevance. This dominant scientific sub-field centred around the clinical discipline of infectious disease control, in which leading actors were hospital clinicians aligned with the evidence-based medicine movement. Aerosol scientists—typically, chemists, and engineers—representing the heterodoxy were systematically excluded from key decision-making networks and committees. Dominant discourses defined these scientists’ ideas and methodologies as weak, their empirical findings as untrustworthy or insignificant, and their contributions to debate as unhelpful.
Conclusion:
The hegemonic grip of medical infection control discourse remains strong. Exit from the pandemic depends on science and policy finding a way to renegotiate what Bourdieu called the ‘rules of the scientific game’—what counts as evidence, quality, and rigour.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | | | | |
Collapse
|
4
|
Habibi N, Uddin S, Al‐Salameen F, Al‐Amad S, Kumar V, Al‐Otaibi M, Razzack NA, Shajan A, Shirshikar F. SARS-CoV-2, other respiratory viruses and bacteria in aerosols: Report from Kuwait's hospitals. INDOOR AIR 2021; 31:1815-1825. [PMID: 34121237 PMCID: PMC8447393 DOI: 10.1111/ina.12871] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 05/08/2023]
Abstract
The role of airborne particles in the spread of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is well explored. The novel coronavirus can survive in aerosol for extended periods, and its interaction with other viral communities can cause additional virulence and infectivity. This baseline study reports concentrations of SARS-CoV-2, other respiratory viruses, and pathogenic bacteria in the indoor air from three major hospitals (Sheikh Jaber, Mubarak Al-Kabeer, and Al-Amiri) in Kuwait dealing with coronavirus disease 2019 (COVID-19) patients. The indoor aerosol samples showed 12-99 copies of SARS-CoV-2 per m3 of air. Two non-SARS-coronavirus (strain HKU1 and NL63), respiratory syncytial virus (RSV), and human bocavirus, human rhinoviruses, Influenza B (FluB), and human enteroviruses were also detected in COVID-positive areas of Mubarak Al Kabeer hospital (MKH). Pathogenic bacteria such as Mycoplasma pneumonia, Streptococcus pneumonia and, Haemophilus influenza were also found in the hospital aerosols. Our results suggest that the existing interventions such as social distancing, use of masks, hand hygiene, surface sanitization, and avoidance of crowded indoor spaces are adequate to prevent the spread of SARS-CoV-2 in enclosed areas. However, increased ventilation can significantly reduce the concentration of SARS-CoV-2 in indoor aerosols. The synergistic or inhibitory effects of other respiratory pathogens in the spread, severity, and complexity of SARS-CoV-2 need further investigation.
Collapse
Affiliation(s)
- N. Habibi
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - S. Uddin
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - F. Al‐Salameen
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - S. Al‐Amad
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - V. Kumar
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - M. Al‐Otaibi
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - N. Abdul Razzack
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - A. Shajan
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| | - F. Shirshikar
- Environment and Life Sciences Research CenterKuwait Institute for Scientific ResearchSafatKuwait
| |
Collapse
|
5
|
Kaur A, Chopra M, Bhushan M, Gupta S, Kumari P H, Sivagurunathan N, Shukla N, Rajagopal S, Bhalothia P, Sharma P, Naravula J, Suravajhala R, Gupta A, Abbasi BA, Goswami P, Singh H, Narang R, Polavarapu R, Medicherla KM, Valadi J, Kumar S A, Chaubey G, Singh KK, Bandapalli OR, Kavi Kishor PB, Suravajhala P. The Omic Insights on Unfolding Saga of COVID-19. Front Immunol 2021; 12:724914. [PMID: 34745097 PMCID: PMC8564481 DOI: 10.3389/fimmu.2021.724914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Arvinpreet Kaur
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Mehak Chopra
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sonal Gupta
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | | - Narmadhaa Sivagurunathan
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Nidhi Shukla
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalini Rajagopal
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Purva Bhalothia
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Purnima Sharma
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
| | - Jalaja Naravula
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Renuka Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Ayam Gupta
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Bilal Ahmed Abbasi
- Functional Genomics Unit, Council of Scientific and Industrial Research- Institute of Genomics & Integrative Biology (CSIR-IGIB), Delhi, India
| | - Prittam Goswami
- Department of Biotechnology, Haldia Institute of Technology, West Bengal, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Rahul Narang
- Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | | | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Jayaraman Valadi
- Bioclues.org, Hyderabad, India
- Department of Computer Science, Flame University, Pune, India
| | - Anil Kumar S
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Benaras Hindu University, Varanasi, India
| | - Keshav K. Singh
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| | - Obul Reddy Bandapalli
- Bioclues.org, Hyderabad, India
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Polavarapu Bilhan Kavi Kishor
- Bioclues.org, Hyderabad, India
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kerala, India
| |
Collapse
|
6
|
Greenhalgh T, Ozbilgin M, Contandriopoulos D. Orthodoxy, illusio, and playing the scientific game: a Bourdieusian analysis of infection control science in the COVID-19 pandemic. Wellcome Open Res 2021; 6:126. [DOI: 10.12688/wellcomeopenres.16855.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Scientific and policy bodies’ failure to acknowledge and act on the evidence base for airborne transmission of SARS-CoV-2 in a timely way is both a mystery and a scandal. In this study, we applied theories from Bourdieu to address the question, “How was a partial and partisan scientific account of SARS-CoV-2 transmission constructed and maintained, leading to widespread imposition of infection control policies which de-emphasised airborne transmission?”. Methods: From one international case study (the World Health Organisation) and four national ones (UK, Canada, USA and Japan), we selected a purposive sample of publicly available texts including scientific evidence summaries, guidelines, policy documents, public announcements, and social media postings. To analyse these, we applied Bourdieusian concepts of field, doxa, scientific capital, illusio, and game-playing. We explored in particular the links between scientific capital, vested interests, and policy influence. Results: Three fields—political, state (policy and regulatory), and scientific—were particularly relevant to our analysis. Political and policy actors at international, national, and regional level aligned—predominantly though not invariably—with medical scientific orthodoxy which promoted the droplet theory of transmission and considered aerosol transmission unproven or of doubtful relevance. This dominant scientific sub-field centred around the clinical discipline of infectious disease control, in which leading actors were hospital clinicians aligned with the evidence-based medicine movement. Aerosol scientists—typically, chemists, and engineers—representing the heterodoxy were systematically excluded from key decision-making networks and committees. Dominant discourses defined these scientists’ ideas and methodologies as weak, their empirical findings as untrustworthy or insignificant, and their contributions to debate as unhelpful. Conclusion: The hegemonic grip of medical infection control discourse remains strong. Exit from the pandemic depends on science and policy finding a way to renegotiate what Bourdieu called the ‘rules of the scientific game’—what counts as evidence, quality, and rigour.
Collapse
|
7
|
Greenhalgh T, Ozbilgin M, Contandriopoulos D. Orthodoxy, illusio, and playing the scientific game: a Bourdieusian analysis of infection control science in the COVID-19 pandemic. Wellcome Open Res 2021; 6:126. [DOI: 10.12688/wellcomeopenres.16855.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Scientific and policy bodies’ failure to acknowledge and act on the evidence base for airborne transmission of SARS-CoV-2 in a timely way is both a mystery and a scandal. In this study, we applied theories from Bourdieu to address the question, “How was a partial and partisan scientific account of SARS-CoV-2 transmission constructed and maintained, leading to widespread imposition of infection control policies which de-emphasised airborne transmission?”. Methods: From one international case study (the World Health Organisation) and four national ones (UK, Canada, USA and Japan), we selected a purposive sample of publicly available texts including scientific evidence summaries, guidelines, policy documents, public announcements, and social media postings. To analyse these, we applied Bourdieusian concepts of field, doxa, scientific capital, illusio, and game-playing. We explored in particular the links between scientific capital, vested interests, and policy influence. Results: Three fields—political, state (policy and regulatory), and scientific—were particularly relevant to our analysis. Political and policy actors at international, national, and regional level aligned—predominantly though not invariably—with medical scientific orthodoxy which promoted the droplet theory of transmission and considered aerosol transmission unproven or of doubtful relevance. This dominant scientific sub-field centred around the clinical discipline of infectious disease control, in which leading actors were hospital clinicians aligned with the evidence-based medicine movement. Aerosol scientists—typically, chemists, and engineers—representing the heterodoxy were systematically excluded from key decision-making networks and committees. Dominant discourses defined these scientists’ ideas and methodologies as weak, their empirical findings as untrustworthy or insignificant, and their contributions to debate as unhelpful. Conclusion: The hegemonic grip of medical infection control discourse remains strong. Exit from the pandemic depends on science and policy finding a way to renegotiate what Bourdieu called the ‘rules of the scientific game’—what counts as evidence, quality, and rigour.
Collapse
|
8
|
Onakpoya IJ, Heneghan CJ, Spencer EA, Brassey J, Plüddemann A, Evans DH, Conly JM, Jefferson T. SARS-CoV-2 and the role of close contact in transmission: a systematic review. F1000Res 2021; 10:280. [PMID: 36398277 PMCID: PMC9636487 DOI: 10.12688/f1000research.52439.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/01/2023] Open
Abstract
Background: SARS-CoV-2 transmission has been reported to be associated with close contact with infected individuals. However, the mechanistic pathway for transmission in close contact settings is unclear. Our objective was to identify, appraise and summarise the evidence from studies assessing the role of close contact in SARS-CoV-2 transmission. Methods: This review is part of an Open Evidence Review on Transmission Dynamics of SARS-CoV-2. We conduct ongoing searches using WHO Covid-19 Database, LitCovid, medRxiv, PubMed and Google Scholar; assess study quality based on the QUADAS-2 criteria and report important findings on an ongoing basis. Results: We included 278 studies: 258 primary studies and 20 systematic reviews. The settings for primary studies were predominantly in home/quarantine facilities (39.5%) and acute care hospitals (12%). The overall reporting quality of the studies was low-to-moderate. There was significant heterogeneity in design and methodology. The frequency of attack rates (PCR testing) varied between 2.1-75%; attack rates were highest in prison and wedding venues, and in households. The frequency of secondary attack rates was 0.3-100% with rates highest in home/quarantine settings. Three studies showed no transmission if the index case was a recurrent infection. Viral culture was performed in four studies of which three found replication-competent virus; culture results were negative where index cases had recurrent infections. Eighteen studies performed genomic sequencing with phylogenetic analysis - the completeness of genomic similarity ranged from 77-100%. Findings from systematic reviews showed that children were significantly less likely to transmit SARS-CoV-2 and household contact was associated with a significantly increased risk of infection. Conclusions: The evidence from published studies demonstrates that SARS-CoV-2 can be transmitted in close contact settings. The risk of transmission is greater in household contacts. There was a wide variation in methodology. Standardized guidelines for reporting transmission in close contact settings should be developed.
Collapse
Affiliation(s)
- Igho J. Onakpoya
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
- Department for Continuing Education, University of Oxford, Rewley house, Wellington Square, Oxford, OX1 2JA, UK
| | - Carl J. Heneghan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - Elizabeth A. Spencer
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | | | - Annette Plüddemann
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| | - David H. Evans
- Department of Medical Microbiology & Immunology,Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - John M. Conly
- University of Calgary and Alberta Health Services,, University of Calgary, Calgary, AB, T2N 4Z6, Canada
| | - Tom Jefferson
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|