1
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Wauchope BA, Coventry BJ, Roder DM. Increased Early Cancer Diagnosis: Unveiling Immune-Cancer Biology to Explain Clinical "Overdiagnosis". Cancers (Basel) 2023; 15:cancers15041139. [PMID: 36831482 PMCID: PMC9953985 DOI: 10.3390/cancers15041139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/28/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Even though clinically small 'early' cancers represent many millions of cells biologically, when removed surgically, these often never recur or regrow, nor reduce the individual's lifespan. However, some early cancers remain quiescent and indolent; while others grow and metastasize, threatening life. Distinguishing between these different clinical behaviours using clinical/pathological criteria is currently problematic. It is reported that many suspicious lesions and early cancers are being removed surgically that would not threaten the patient's life. This has been termed 'overdiagnosis', especially in the sphere of cancer screening. Although a controversial and emotive topic, it poses clinical and public health policy challenges. The diagnostic differentiation between 'non-lethal' and 'lethal' tumor forms is generally impossible. One perspective gathering evidential support is that a dynamic balance exists between the immune response and malignant processes governing 'lethality', where many more cancers are produced than become clinically significant due to the immune system preventing their progression. Higher medical screening "diagnosis" rates may reflect lead-time effects, with more 'non-progressing' cancers detected when an early immune-cancer interaction is occurring. We present a model for this immune-cancer interaction and review 'excess' or 'overdiagnosis' claims that accompany increasingly sensitive diagnostic and screening technologies. We consider that immune tools should be incorporated into future research, with potential for immune system modulation for some early cancers.
Collapse
Affiliation(s)
- Bruce A. Wauchope
- Molechecks Australia, 1284 South Road, Clovelly Park 5042, Australia
- Discipline of Surgery, Cancer Immunotherapy Laboratory, University of Adelaide, Royal Adelaide Hospital, Adelaide 5005, Australia
| | - Brendon J. Coventry
- Discipline of Surgery, Cancer Immunotherapy Laboratory, University of Adelaide, Royal Adelaide Hospital, Adelaide 5005, Australia
- Correspondence:
| | - David M. Roder
- Cancer Epidemiology and Population Health, Allied Health and Human Performance, University of South Australia, Adelaide 5000, Australia
| |
Collapse
|
3
|
Witkowski JM, Bryl E, Fulop T. Should we Try to Alleviate Immunosenescence and Inflammaging - Why, How and to What Extent? Curr Pharm Des 2020; 25:4154-4162. [PMID: 31713479 DOI: 10.2174/1381612825666191111153016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/07/2019] [Indexed: 12/29/2022]
Abstract
With advancing age, immune responses of human beings to external pathogens, i.e., bacteria, viruses, fungi and parasites, and to internal pathogens - malignant neoplasm cells - become less effective. Two major features in the process of aging of the human immune system are immunosenescence and inflammaging. The immune systems of our predecessors co-evolved with pathogens, which led to the occurrence of effective immunity. However, the otherwise beneficial activity may pose problems to the organism of the host and so it has builtin brakes (regulatory immune cells) and - with age - it undergoes adaptations and modifications, examples of which are the mentioned inflammaging and immunosenescence. Here we describe the mechanisms that first created our immune systems, then the consequences of their changes associated with aging, and the mechanisms of inflammaging and immunosenescence. Finally, we discuss to what extent both processes are detrimental and to what extent they might be beneficial and propose some therapeutic approaches for their wise control.
Collapse
Affiliation(s)
- Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Ewa Bryl
- Department of Pathology and Experimental Rheumatology, Medical University of Gdansk, Gdansk, Poland
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
4
|
Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 2019; 235:2738-2752. [PMID: 31498430 DOI: 10.1002/jcp.29177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.
Collapse
Affiliation(s)
- Feifei Ren
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Liu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Sciences and Education and Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huang Huang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Mei
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Yu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Mo
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibin Dong
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Coventry BJ. Therapeutic vaccination immunomodulation: forming the basis of all cancer immunotherapy. Ther Adv Vaccines Immunother 2019; 7:2515135519862234. [PMID: 31414074 PMCID: PMC6676259 DOI: 10.1177/2515135519862234] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Recent immunotherapy advances have convincingly demonstrated complete tumour removal with long-term survival. These impressive clinical responses have rekindled enthusiasm towards immunotherapy and tumour antigen vaccination providing 'cures' for melanoma and other cancers. However, many patients still do not benefit; sometimes harmed by severe autoimmune toxicity. Checkpoint inhibitors (anti-CTLA4; anti-PD-1) and interleukin-2 (IL-2) are 'pure immune drivers' of pre-existing immune responses and can induce either desirable effector-stimulatory or undesirable inhibitory-regulatory responses. Why some patients respond well, while others do not, is presently unknown, but might be related to the cellular populations being 'driven' at the time of dosing, dictating the resulting immune response. Vaccination is in-vivo immunotherapy requiring an active host response. Vaccination for cancer treatment has been skeptically viewed, arising partially from difficulty demonstrating clear, consistent clinical responses. However, this article puts forward accumulating evidence that 'vaccination' immunomodulation constitutes the fundamental, central, intrinsic property associated with antigen exposure not only from exogenous antigen (allogeneic or autologous) administration, but also from endogenous release of tumour antigen (autologous) from in-vivo tumour-cell damage and lysis. Many 'standard' cancer therapies (chemotherapy, radiotherapy etc.) create waves of tumour-cell damage, lysis and antigen release, thus constituting 'in-vivo vaccination' events. In essence, whenever tumour cells are killed, antigen release can provide in-vivo repeated vaccination events. Effective anti-tumour immune responses require antigen release/supply; immune recognition, and immune responsiveness. With better appreciation of endogenous vaccination and immunomodulation, more refined approaches can be engineered with prospect of higher success rates from cancer therapy, including complete responses and better survival rates.
Collapse
Affiliation(s)
- Brendon J. Coventry
- Discipline of Surgery and Cancer Immunotherapy Laboratory, University of Adelaide, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| |
Collapse
|
6
|
Khadirnaikar S, Kumar P, Pandi SN, Malik R, Dhanasekaran SM, Shukla SK. Immune associated LncRNAs identify novel prognostic subtypes of renal clear cell carcinoma. Mol Carcinog 2018; 58:544-553. [PMID: 30520148 DOI: 10.1002/mc.22949] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Kidney Renal Clear Cell Carcinoma (KIRC) is a significant cause of cancer-related deaths. Here, we aim to identify the LncRNAs associated with the immune system and characterise their clinical utility in KIRC. A total of 504 patients' data was used from TCGA-GDC. In silico correlation analysis identified 143 LncRNAs associated with immune-related genes (r > 0.7, P < 0.05). K-means consensus method clustered KIRC samples in three immune clusters, namely cluster C1, C2, and C3 based on the expression of 143 immune-related LncRNAs. Kaplan-Meier analysis showed that C3 patients survived significantly worse than the other two clusters (P < 0.0001). A comparison of TCGA miRNA, mRNA cluster with immune cluster showed the independence and robustness of immune clusters (HR = 2.02 and P = 2.12 × 10-8 ). The GSEA and CIBERSORT analysis showed high enrichment of poorly activated T-cells in C3 patients. To define LncRNA immune prognostic signature, we randomly divided the TCGA sample into discovery and validation sets. By utilising multivariate Cox regression analysis, we identified and validated a seven LncRNA immune prognostic signature score (LIPS score) (HR = 1.43 and P = 2.73 × 10-6 ) in KIRC. Comparison of LIPS score with all the clinical factors validated its independence and superiority in KIRC prognosis. In summary, we identified LncRNAs associated with the immune system and showed the presence of prognostic subtypes of KIRC patients based on immune-related LncRNA expression. We also identified a novel immune LncRNA based gene-signature for KIRC patients' prognostication.
Collapse
Affiliation(s)
- Seema Khadirnaikar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka
| | - Pranjal Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka
| | - Sathiya N Pandi
- Michigan Center for Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Saravana M Dhanasekaran
- Michigan Center for Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Sudhanshu Kumar Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka
| |
Collapse
|