1
|
Maiuri T, Bazan CB, Harding RJ, Begeja N, Kam TI, Byrne LM, Rodrigues FB, Warner MM, Neuman K, Mansoor M, Badiee M, Dasovich M, Wang K, Thompson LM, Leung AKL, Andres SN, Wild EJ, Dawson TM, Dawson VL, Arrowsmith CH, Truant R. Poly ADP-ribose signaling is dysregulated in Huntington disease. Proc Natl Acad Sci U S A 2024; 121:e2318098121. [PMID: 39331414 PMCID: PMC11459172 DOI: 10.1073/pnas.2318098121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/18/2024] [Indexed: 09/28/2024] Open
Abstract
Huntington disease (HD) is a genetic neurodegenerative disease caused by cytosine, adenine, guanine (CAG) expansion in the Huntingtin (HTT) gene, translating to an expanded polyglutamine tract in the HTT protein. Age at disease onset correlates to CAG repeat length but varies by decades between individuals with identical repeat lengths. Genome-wide association studies link HD modification to DNA repair and mitochondrial health pathways. Clinical studies show elevated DNA damage in HD, even at the premanifest stage. A major DNA repair node influencing neurodegenerative disease is the PARP pathway. Accumulation of poly adenosine diphosphate (ADP)-ribose (PAR) has been implicated in Alzheimer and Parkinson diseases, as well as cerebellar ataxia. We report that HD mutation carriers have lower cerebrospinal fluid PAR levels than healthy controls, starting at the premanifest stage. Human HD induced pluripotent stem cell-derived neurons and patient-derived fibroblasts have diminished PAR response in the context of elevated DNA damage. We have defined a PAR-binding motif in HTT, detected HTT complexed with PARylated proteins in human cells during stress, and localized HTT to mitotic chromosomes upon inhibition of PAR degradation. Direct HTT PAR binding was measured by fluorescence polarization and visualized by atomic force microscopy at the single molecule level. While wild-type and mutant HTT did not differ in their PAR binding ability, purified wild-type HTT protein increased in vitro PARP1 activity while mutant HTT did not. These results provide insight into an early molecular mechanism of HD, suggesting possible targets for the design of early preventive therapies.
Collapse
Affiliation(s)
- Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| | - Carlos Barba Bazan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| | - Rachel J. Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, TorontoONM5S 3M2, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ONM5S 1A8, Canada
| | - Nola Begeja
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| | - Tae-In Kam
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore,MD21205
| | - Lauren M. Byrne
- University College London Huntington Disease Centre, University College London Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, United Kingdom
| | - Filipe B. Rodrigues
- University College London Huntington Disease Centre, University College London Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, United Kingdom
| | - Monica M. Warner
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4L8, Canada
| | - Kaitlyn Neuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| | - Muqtasid Mansoor
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| | - Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Morgan Dasovich
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Keona Wang
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
| | - Leslie M. Thompson
- Department of Neurobiology and Behavior, University of California, Irvine, CA92697
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA92868
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore,MD21205
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| | - Sara N. Andres
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4L8, Canada
| | - Edward J. Wild
- University College London Huntington Disease Centre, University College London Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, United Kingdom
| | - Ted M. Dawson
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore,MD21205
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Valina L. Dawson
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore,MD21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ONM5G 1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 3Z5, Canada
| |
Collapse
|
2
|
Glumoff T, Sowa ST, Lehtiö L. Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers. Bioessays 2021; 44:e2100240. [PMID: 34816463 DOI: 10.1002/bies.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.
Collapse
Affiliation(s)
- Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Zhang M, Lai Y, Vasquez JL, James DI, Smith KM, Waddell ID, Ogilvie DJ, Liu Y, Agoulnik IU. Androgen Receptor and Poly(ADP-ribose) Glycohydrolase Inhibition Increases Efficiency of Androgen Ablation in Prostate Cancer Cells. Sci Rep 2020; 10:3836. [PMID: 32123273 PMCID: PMC7052214 DOI: 10.1038/s41598-020-60849-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
There is mounting evidence of androgen receptor signaling inducing genome instability and changing DNA repair capacity in prostate cancer cells. Expression of genes associated with base excision repair (BER) is increased with prostate cancer progression and correlates with poor prognosis. Poly(ADP-ribose) polymerase (PARP) and poly(ADP-ribose) glycohydrolase (PARG) are key enzymes in BER that elongate and degrade PAR polymers on target proteins. While PARP inhibitors have been tested in clinical trials and are a promising therapy for prostate cancer patients with TMPRSS2-ERG fusions and mutations in DNA repair genes, PARG inhibitors have not been evaluated. We show that PARG is a direct androgen receptor (AR) target gene. AR is recruited to the PARG locus and induces PARG expression. Androgen ablation combined with PARG inhibition synergistically reduces BER capacity in independently derived LNCaP and LAPC4 prostate cancer cell lines. A combination of PARG inhibition with androgen ablation or with the DNA damaging drug, temozolomide, significantly reduces cellular proliferation and increases DNA damage. PARG inhibition alters AR transcriptional output without changing AR protein levels. Thus, AR and PARG are engaged in reciprocal regulation suggesting that the success of androgen ablation therapy can be enhanced by PARG inhibition in prostate cancer patients.
Collapse
Affiliation(s)
- Manqi Zhang
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Judy L Vasquez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dominic I James
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Kate M Smith
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Ian D Waddell
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
- CRL, Chesterford Research Park, CB10 1XL, Alderley Park, UK
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK104TG, UK
| | - Yuan Liu
- Department of Chemistry and Biochemistry, College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
O'Sullivan J, Tedim Ferreira M, Gagné JP, Sharma AK, Hendzel MJ, Masson JY, Poirier GG. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation. Nat Commun 2019; 10:1182. [PMID: 30862789 PMCID: PMC6414514 DOI: 10.1038/s41467-019-08859-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/02/2019] [Indexed: 12/21/2022] Open
Abstract
Protein ADP-ribosylation is essential for the regulation of several cellular pathways, enabling dynamic responses to diverse pathophysiological conditions. It is modulated through a dynamic interplay between ADP-ribose readers, writers and erasers. While ADP-ribose synthesis has been studied and reviewed extensively, ADP-ribose processing by erasing enzymes has received comparably less attention. However, major progress in the mass spectrometric identification of ADP-ribosylated residues and the biochemical characterization of ADP-ribose erasers has substantially expanded our knowledge of ADP-ribosylation dynamics. Herein, we describe recent insights into the biology of ADP-ribose erasers and discuss the intricately orchestrated cellular processes to switch off ADP-ribose-dependent mechanisms. ADP-ribose erasing enzymes are increasingly recognized as critical regulators of protein ADP-ribosylation dynamics in living systems. Here, the authors review recent advances in the discovery and characterization of ADP-ribose erasers and discuss their role within the cellular ADP-ribosylation machinery.
Collapse
Affiliation(s)
- Julia O'Sullivan
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada
| | - Maria Tedim Ferreira
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada
| | - Jean-Philippe Gagné
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada
| | - Ajit K Sharma
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 1Z2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 1Z2, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G 2H7, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, HDQ Pavilion, Oncology Division, Québec, G1R 2J6, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada.,Centre de Recherche sur le Cancer de l'Université Laval, Québec, G1R 3S3, Canada
| | - Guy G Poirier
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, G1V 0A6, Canada. .,Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, CHUL Pavilion, Oncology division, Québec, G1V 4G2, Canada. .,Centre de Recherche sur le Cancer de l'Université Laval, Québec, G1R 3S3, Canada.
| |
Collapse
|
5
|
Acton B, Small HF, Smith KM, McGonagle A, Stowell AIJ, James DI, Hamilton NM, Hamilton N, Hitchin JR, Hutton CP, Waddell ID, Ogilvie DJ, Jordan AM. Fluoromethylcyclopropylamine derivatives as potential in vivo toxicophores - A cautionary disclosure. Bioorg Med Chem Lett 2019; 29:560-562. [PMID: 30616904 PMCID: PMC6376317 DOI: 10.1016/j.bmcl.2018.12.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 11/23/2022]
Abstract
Fluorination of metabolic hotspots in a molecule is a common medicinal chemistry strategy to improve in vivo half-life and exposure and, generally, this strategy offers significant benefits. Here, we report the application of this strategy to a series of poly-ADP ribose glycohydrolase (PARG) inhibitors, resulting in unexpected in vivo toxicity which was attributed to this single-atom modification.
Collapse
Affiliation(s)
- Ben Acton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Helen F Small
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Alison McGonagle
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Alexandra I J Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Niall M Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Nicola Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - James R Hitchin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Colin P Hutton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Ian D Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Donald J Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK.
| |
Collapse
|
6
|
Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem 2018; 61:10767-10792. [PMID: 30403352 DOI: 10.1021/acs.jmedchem.8b01407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.
Collapse
Affiliation(s)
- Bohdan Waszkowycz
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Kate M Smith
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Alison E McGonagle
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Allan M Jordan
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Ben Acton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Emma E Fairweather
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Louise A Griffiths
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Niall M Hamilton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Nicola S Hamilton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - James R Hitchin
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Colin P Hutton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Dominic I James
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Clifford D Jones
- Oncology Innovative Medicines Unit , AstraZeneca , Alderley Park , Macclesfield Cheshire SK10 4TG , U.K
| | - Stuart Jones
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Daniel P Mould
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Helen F Small
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Alexandra I J Stowell
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Julie A Tucker
- Structure and Biophysics, Discovery Sciences , AstraZeneca , Alderley Park , Macclesfield , Cheshire SK10 4TG , U.K
| | - Ian D Waddell
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| |
Collapse
|
7
|
Gravells P, Grant E, Smith KM, James DI, Bryant HE. Specific killing of DNA damage-response deficient cells with inhibitors of poly(ADP-ribose) glycohydrolase. DNA Repair (Amst) 2017; 52:81-91. [PMID: 28254358 PMCID: PMC5360195 DOI: 10.1016/j.dnarep.2017.02.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/16/2017] [Accepted: 02/13/2017] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosylation) of proteins following DNA damage is well studied and the use of poly(ADP-ribose) polymerase (PARP) inhibitors as therapeutic agents is an exciting prospect for the treatment of many cancers. Poly(ADP-ribose) glycohydrolase (PARG) has endo- and exoglycosidase activities which can cleave glycosidic bonds, rapidly reversing the action of PARP enzymes. Like addition of poly(ADP-ribose) (PAR) by PARP, removal of PAR by PARG is also thought to be required for repair of DNA strand breaks and for continued replication at perturbed forks. Here we use siRNA to show a synthetic lethal relationship between PARG and BRCA1, BRCA2, PALB2, FAM175A (ABRAXAS) and BARD1. In addition, we demonstrate that MCF7 cells depleted of these proteins are sensitive to Gallotannin and a novel and specific PARG inhibitor PDD00017273. We confirm that PARG inhibition increases endogenous DNA damage, stalls replication forks and increases homologous recombination, and propose that it is the lack of homologous recombination (HR) proteins at PARG inhibitor-induced stalled replication forks that induces cell death. Interestingly not all genes that are synthetically lethal with PARP result in sensitivity to PARG inhibitors, suggesting that although there is overlap, the functions of PARP and PARG may not be completely identical. These data together add further evidence to the possibility that single treatment therapy with PARG inhibitors could be used for treatment of certain HR deficient tumours and provide insight into the relationship between PARP, PARG and the processes of DNA repair.
Collapse
Affiliation(s)
- Polly Gravells
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Emma Grant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, The University of Manchester, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| |
Collapse
|
8
|
James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AIJ, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol 2016; 11:3179-3190. [PMID: 27689388 DOI: 10.1021/acschembio.6b00609] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).
Collapse
Affiliation(s)
- Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Emma E Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Louise A Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Nicola S Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - James R Hitchin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Colin P Hutton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Stuart Jones
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Alison E McGonagle
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen Small
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Alexandra I J Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Julie Tucker
- Structure and Biophysics, Discovery Sciences, AstraZeneca , Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Ian D Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Bohdan Waszkowycz
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Donald J Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
9
|
James DI, Durant S, Eckersley K, Fairweather E, Griffiths LA, Hamilton N, Kelly P, O'Connor M, Shea K, Waddell ID, Ogilvie DJ. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells. F1000Res 2016; 5:736. [PMID: 27610220 PMCID: PMC4995692 DOI: 10.12688/f1000research.8463.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/06/2023] Open
Abstract
After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.
Collapse
Affiliation(s)
- Dominic I. James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Durant
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kay Eckersley
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Louise A. Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Nicola Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark O'Connor
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kerry Shea
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Ian D. Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Donald J. Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
10
|
James DI, Durant S, Eckersley K, Fairweather E, Griffiths LA, Hamilton N, Kelly P, O'Connor M, Shea K, Waddell ID, Ogilvie DJ. An assay to measure poly(ADP ribose) glycohydrolase (PARG) activity in cells. F1000Res 2016; 5:736. [PMID: 27610220 PMCID: PMC4995692 DOI: 10.12688/f1000research.8463.2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2016] [Indexed: 12/23/2022] Open
Abstract
After a DNA damage signal multiple polymers of ADP ribose attached to poly(ADP) ribose (PAR) polymerases (PARPs) are broken down by the enzyme poly(ADP) ribose glycohydrolase (PARG). Inhibition of PARG leads to a failure of DNA repair and small molecule inhibition of PARG has been a goal for many years. To determine whether biochemical inhibitors of PARG are active in cells we have designed an immunofluorescence assay to detect nuclear PAR after DNA damage. This 384-well assay is suitable for medium throughput high-content screening and can detect cell-permeable inhibitors of PARG from nM to µM potency. In addition, the assay has been shown to work in murine cells and in a variety of human cancer cells. Furthermore, the assay is suitable for detecting the DNA damage response induced by treatment with temozolomide and methylmethane sulfonate (MMS). Lastly, the assay has been shown to be robust over a period of several years.
Collapse
Affiliation(s)
- Dominic I. James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Stephen Durant
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kay Eckersley
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Emma Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Louise A. Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Nicola Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Mark O'Connor
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Kerry Shea
- Oncology iMED, AstraZeneca Pharmaceuticals, Macclesfield, UK
| | - Ian D. Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Donald J. Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|