1
|
Whole Genome Sequencing Based Taxonomic Classification, and Comparative Genomic Analysis of Potentially Human Pathogenic Enterobacter spp. Isolated from Chlorinated Wastewater in the North West Province, South Africa. Microorganisms 2021; 9:microorganisms9091928. [PMID: 34576823 PMCID: PMC8466087 DOI: 10.3390/microorganisms9091928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/04/2021] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Comparative genomics, in particular, pan-genome analysis, provides an in-depth understanding of the genetic variability and dynamics of a bacterial species. Coupled with whole-genome-based taxonomic analysis, these approaches can help to provide comprehensive, detailed insights into a bacterial species. Here, we report whole-genome-based taxonomic classification and comparative genomic analysis of potential human pathogenic Enterobacter hormaechei subsp. hoffmannii isolated from chlorinated wastewater. Genome Blast Distance Phylogeny (GBDP), digital DNA-DNA hybridization (dDDH), and average nucleotide identity (ANI) confirmed the identity of the isolates. The algorithm PathogenFinder predicted the isolates to be human pathogens with a probability of greater than 0.78. The potential pathogenic nature of the isolates was supported by the presence of biosynthetic gene clusters (BGCs), aerobactin, and aryl polyenes (APEs), which are known to be associated with pathogenic/virulent strains. Moreover, analysis of the genome sequences of the isolates reflected the presence of an arsenal of virulence factors and antibiotic resistance genes that augment the predictions of the algorithm PathogenFinder. The study comprehensively elucidated the genomic features of pathogenic Enterobacter isolates from wastewaters, highlighting the role of wastewaters in the dissemination of pathogenic microbes, and the need for monitoring the effectiveness of the wastewater treatment process.
Collapse
|
2
|
Zondervan NA, Martins Dos Santos VAP, Suarez-Diez M, Saccenti E. Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021; 22:102. [PMID: 33541265 PMCID: PMC7860044 DOI: 10.1186/s12864-021-07388-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Staphylococcus and Streptococcus species can cause many different diseases, ranging from mild skin infections to life-threatening necrotizing fasciitis. Both genera consist of commensal species that colonize the skin and nose of humans and animals, and of which some can display a pathogenic phenotype. RESULTS We compared 235 Staphylococcus and 315 Streptococcus genomes based on their protein domain content. We show the relationships between protein persistence and essentiality by integrating essentiality predictions from two metabolic models and essentiality measurements from six large-scale transposon mutagenesis experiments. We identified clusters of strains within species based on proteins associated to similar biological processes. We built Random Forest classifiers that predicted the zoonotic potential. Furthermore, we identified shared attributes between of Staphylococcus aureus and Streptococcus pyogenes that allow them to cause necrotizing fasciitis. CONCLUSIONS Differences observed in clustering of strains based on functional groups of proteins correlate with phenotypes such as host tropism, capability to infect multiple hosts and drug resistance. Our method provides a solid basis towards large-scale prediction of phenotypes based on genomic information.
Collapse
Affiliation(s)
- Niels A Zondervan
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
- LifeGlimmer GmBH, Markelstraße 38, 12163, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708WE, Wageningen, Netherlands.
| |
Collapse
|
3
|
Kampers LFC, Koehorst JJ, van Heck RJA, Suarez-Diez M, Stams AJM, Schaap PJ. A metabolic and physiological design study of Pseudomonas putida KT2440 capable of anaerobic respiration. BMC Microbiol 2021; 21:9. [PMID: 33407113 PMCID: PMC7789669 DOI: 10.1186/s12866-020-02058-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 is a metabolically versatile, HV1-certified, genetically accessible, and thus interesting microbial chassis for biotechnological applications. However, its obligate aerobic nature hampers production of oxygen sensitive products and drives up costs in large scale fermentation. The inability to perform anaerobic fermentation has been attributed to insufficient ATP production and an inability to produce pyrimidines under these conditions. Addressing these bottlenecks enabled growth under micro-oxic conditions but does not lead to growth or survival under anoxic conditions. RESULTS Here, a data-driven approach was used to develop a rational design for a P. putida KT2440 derivative strain capable of anaerobic respiration. To come to the design, data derived from a genome comparison of 1628 Pseudomonas strains was combined with genome-scale metabolic modelling simulations and a transcriptome dataset of 47 samples representing 14 environmental conditions from the facultative anaerobe Pseudomonas aeruginosa. CONCLUSIONS The results indicate that the implementation of anaerobic respiration in P. putida KT2440 would require at least 49 additional genes of known function, at least 8 genes encoding proteins of unknown function, and 3 externally added vitamins.
Collapse
Affiliation(s)
- Linde F C Kampers
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Ruben J A van Heck
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Alfons J M Stams
- Laboratory of Microbiology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research Centre, Stippeneng 4, 6708, WE, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Alves JI, Visser M, Arantes AL, Nijsse B, Plugge CM, Alves MM, Stams AJM, Sousa DZ. Effect of Sulfate on Carbon Monoxide Conversion by a Thermophilic Syngas-Fermenting Culture Dominated by a Desulfofundulus Species. Front Microbiol 2020; 11:588468. [PMID: 33304333 PMCID: PMC7701048 DOI: 10.3389/fmicb.2020.588468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
A syngas-degrading enrichment culture, culture T-Syn, was dominated by a bacterium closely related to Desulfofundulus australicus strain AB33T (98% 16S rRNA gene sequence identity). Culture T-Syn could convert high CO concentrations (from pCO ≈ 34 kPa to pCO ≈ 170 kPa), both in the absence and in the presence of sulfate as external electron acceptor. The products formed from CO conversion were H2 and acetate. With sulfate, a lower H2/acetate ratio was observed in the product profile, but CO conversion rates were similar to those in the absence of sulfate. The ability of D. australicus strain AB33T to use CO was also investigated. D. australicus strain AB33T uses up to 40% CO (pCO ≈ 68 kPa) with sulfate and up to 20% CO (pCO ≈ 34 kPa) without sulfate. Comparison of the metagenome-assembled genome (MAG) of the Desulfofundulus sp. from T-Syn culture with the genome of D. australicus strain AB33T revealed high similarity, with an ANI value of 99% and only 32 unique genes in the genome of the Desulfofundulus sp. T-Syn. So far, only Desulfotomaculum nigrificans strain CO-1-SRB had been described to grow with CO with and without sulfate. This work further shows the carboxydotrophic potential of Desulfofundulus genus for CO conversion, both in sulfate-rich and low-sulfate environments.
Collapse
Affiliation(s)
- Joana I Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Michael Visser
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Ana L Arantes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Caroline M Plugge
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - M Madalena Alves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Alfons J M Stams
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Diana Z Sousa
- Centre of Biological Engineering, University of Minho, Braga, Portugal.,Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
5
|
The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation. Sci Data 2019; 6:254. [PMID: 31685817 PMCID: PMC6828702 DOI: 10.1038/s41597-019-0263-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/11/2019] [Indexed: 11/08/2022] Open
Abstract
The RDF data model facilitates integration of diverse data available in structured and semi-structured formats. To obtain a coherent RDF graph the chosen ontology must be consistently applied. However, addition of new diverse data causes the ontology to evolve, which could lead to accumulation of unintended erroneous composites. Thus, there is a need for a gate keeping system that compares the intended content described in the ontology with the actual content of the resource. The Empusa code generator facilitates creation of composite RDF resources from disparate sources. Empusa can convert a schema into an associated application programming interface (API), that can be used to perform data consistency checks and generates Markdown documentation to make persistent URLs resolvable. Using Empusa consistency is ensured within and between the ontology and the content of the resource. As an illustration of the potential of Empusa, we present the Genome Biology Ontology Language (GBOL). GBOL uses and extends current ontologies to provide a formal representation of genomic entities, along with their properties, relations and provenance.
Collapse
|
6
|
Koehorst JJ, van Dam JCJ, Saccenti E, Martins Dos Santos VAP, Suarez-Diez M, Schaap PJ. SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics 2019; 34:1401-1403. [PMID: 29186322 PMCID: PMC5905645 DOI: 10.1093/bioinformatics/btx767] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 11/17/2022] Open
Abstract
Summary To unlock the full potential of genome data and to enhance data interoperability and reusability of genome annotations we have developed SAPP, a Semantic Annotation Platform with Provenance. SAPP is designed as an infrastructure supporting FAIR de novo computational genomics but can also be used to process and analyze existing genome annotations. SAPP automatically predicts, tracks and stores structural and functional annotations and associated dataset- and element-wise provenance in a Linked Data format, thereby enabling information mining and retrieval with Semantic Web technologies. This greatly reduces the administrative burden of handling multiple analysis tools and versions thereof and facilitates multi-level large scale comparative analysis. Availability and implementation SAPP is written in JAVA and freely available at https://gitlab.com/sapp and runs on Unix-like operating systems. The documentation, examples and a tutorial are available at https://sapp.gitlab.io.
Collapse
Affiliation(s)
- Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Jesse C J van Dam
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands.,LifeGlimmer GmbH, 12163 Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
7
|
Prabha R, Singh DP. Cyanobacterial phylogenetic analysis based on phylogenomics approaches render evolutionary diversification and adaptation: an overview of representative orders. 3 Biotech 2019; 9:87. [PMID: 30800598 DOI: 10.1007/s13205-019-1635-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/11/2019] [Indexed: 12/12/2022] Open
Abstract
Phylogenetic studies based on a definite set of marker genes usually reconstruct evolutionary relationships among the prokaryotic species. Based on specific target sequences, such studies represent variations and allow identification of similarities or dissimilarities in organisms. With the advent of completely sequenced genomes and accumulation of information on whole prokaryotic genomes, phylogenetic reconstructions should be considered more reliable if they are ideally based on entire genomes to resolve phylogenetic interest. We applied phylogenomics approaches taking into account completely sequenced cyanobacterial genomes to reconstruct underlying species that represented major taxonomic classes and belonged to distinctly different habitats (freshwater, marine, soils, and rocks). We did not rely on describing phylogeny of all representative class of cyanobacterial species on the basis of only ribosomal gene, 16S rDNA gene. In contrast, we analyzed combined molecular marker and phylogenomics approaches (genome alignment, gene content and gene order, composition vector and protein domain content) for accurately inferring phylogenetic relationship of species. We have shown that this approach reflects the impact of evolution on the organisms and considers connects with the ecological adaptation in cyanobacteria in different habitats. Analysis revealed that the members from marine habitat occupy different profile than those from freshwater. Impact of GC content and genomic repetitiveness over the diversification of cyanobacterial species and their possible role in adaptation was also reflected. Members occupying similar habitats cover more evolutionary distance together and also evolve various strategies for adaptation and survival either through genomic repetitiveness or preferences for genes of particular functions or modified GC content. Genomes undergo different changes for their adaptation in diverse habitats.
Collapse
Affiliation(s)
- Ratna Prabha
- 1ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101 India
- 2Department of Biotechnology, Mewar University, Gangrar, Chittorgarh, Rajasthan India
| | - Dhananjaya P Singh
- 1ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, 275101 India
| |
Collapse
|
8
|
Versluis D, Nijsse B, Naim MA, Koehorst JJ, Wiese J, Imhoff JF, Schaap PJ, van Passel MWJ, Smidt H, Sipkema D. Comparative Genomics Highlights Symbiotic Capacities and High Metabolic Flexibility of the Marine Genus Pseudovibrio. Genome Biol Evol 2018; 10:125-142. [PMID: 29319806 PMCID: PMC5765558 DOI: 10.1093/gbe/evx271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesized that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV, and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin, and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival, for example through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Bart Nijsse
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mohd Azrul Naim
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Jutta Wiese
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Johannes F Imhoff
- Marine Microbiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, The Netherlands
| |
Collapse
|
9
|
Abstract
The complete genome sequence of Eubacterium hallii strain L2-7 is reported here. This intestinal strain produces butyrate from glucose as well as lactate when acetate is provided in the growth medium. In addition, strain L2-7 has been shown to improve insulin sensitivity in db/db mice, indicating its application potential.
Collapse
|
10
|
Kamminga T, Slagman SJ, Bijlsma JJE, Martins Dos Santos VAP, Suarez-Diez M, Schaap PJ. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate. Biotechnol Bioeng 2017; 114:2339-2347. [PMID: 28600895 PMCID: PMC6084303 DOI: 10.1002/bit.26347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/13/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022]
Abstract
Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708, Wageningen, The Netherlands.,Bioprocess Technology and Support, MSD Animal Health, Boxmeer, The Netherlands
| | - Simen-Jan Slagman
- Bioprocess Technology and Support, MSD Animal Health, Boxmeer, The Netherlands
| | - Jetta J E Bijlsma
- Discovery and Technology, MSD Animal Health, Boxmeer, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708, Wageningen, The Netherlands
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708, Wageningen, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Stippeneng 4, 6708, Wageningen, The Netherlands
| |
Collapse
|
11
|
Nasir A, Kim KM, Caetano-Anollés G. Phylogenetic Tracings of Proteome Size Support the Gradual Accretion of Protein Structural Domains and the Early Origin of Viruses from Primordial Cells. Front Microbiol 2017; 8:1178. [PMID: 28690608 PMCID: PMC5481351 DOI: 10.3389/fmicb.2017.01178] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/09/2017] [Indexed: 01/05/2023] Open
Abstract
Untangling the origin and evolution of viruses remains a challenging proposition. We recently studied the global distribution of protein domain structures in thousands of completely sequenced viral and cellular proteomes with comparative genomics, phylogenomics, and multidimensional scaling methods. A tree of life describing the evolution of proteomes revealed viruses emerging from the base of the tree as a fourth supergroup of life. A tree of domains indicated an early origin of modern viral lineages from ancient cells that co-existed with the cellular ancestors. However, it was recently argued that the rooting of our trees and the basal placement of viruses was artifactually induced by small genome (proteome) size. Here we show that these claims arise from misunderstanding and misinterpretations of cladistic methodology. Trees are reconstructed unrooted, and thus, their topologies cannot be distorted a posteriori by the rooting methodology. Tracing proteome size in trees and multidimensional views of evolutionary relationships as well as tests of leaf stability and exclusion/inclusion of taxa demonstrated that the smallest proteomes were neither attracted toward the root nor caused any topological distortions of the trees. Simulations confirmed that taxa clustering patterns were independent of proteome size and were determined by the presence of known evolutionary relatives in data matrices, highlighting the need for broader taxon sampling in phylogeny reconstruction. Instead, phylogenetic tracings of proteome size revealed a slowdown in innovation of the structural domain vocabulary and four regimes of allometric scaling that reflected a Heaps law. These regimes explained increasing economies of scale in the evolutionary growth and accretion of kernel proteome repertoires of viruses and cellular organisms that resemble growth of human languages with limited vocabulary sizes. Results reconcile dynamic and static views of domain frequency distributions that are consistent with the axiom of spatiotemporal continuity that is tenet of evolutionary thinking.
Collapse
Affiliation(s)
- Arshan Nasir
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Kyung Mo Kim
- Division of Polar Life Sciences, Korea Polar Research InstituteIncheon, South Korea
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| |
Collapse
|
12
|
Concurrent Haloalkanoate Degradation and Chlorate Reduction by Pseudomonas chloritidismutans AW-1 T. Appl Environ Microbiol 2017; 83:AEM.00325-17. [PMID: 28411224 DOI: 10.1128/aem.00325-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/09/2017] [Indexed: 11/20/2022] Open
Abstract
Haloalkanoates are environmental pollutants that can be degraded aerobically by microorganisms producing hydrolytic dehalogenases. However, there is a lack of information about the anaerobic degradation of haloalkanoates. Genome analysis of Pseudomonas chloritidismutans AW-1T, a facultative anaerobic chlorate-reducing bacterium, showed the presence of two putative haloacid dehalogenase genes, the l-DEX gene and dehI, encoding an l-2-haloacid dehalogenase (l-DEX) and a halocarboxylic acid dehydrogenase (DehI), respectively. Hence, we studied the concurrent degradation of haloalkanoates and chlorate as a yet-unexplored trait of strain AW-1T The deduced amino acid sequences of l-DEX and DehI revealed 33 to 37% and 26 to 86% identities with biochemically/structurally characterized l-DEX and the d- and dl-2-haloacid dehalogenase enzymes, respectively. Physiological experiments confirmed that strain AW-1T can grow on chloroacetate, bromoacetate, and both l- and d-α-halogenated propionates with chlorate as an electron acceptor. Interestingly, growth and haloalkanoate degradation were generally faster with chlorate as an electron acceptor than with oxygen as an electron acceptor. In line with this, analyses of l-DEX and DehI dehalogenase activities using cell-free extract (CFE) of strain AW-1T grown on dl-2-chloropropionate under chlorate-reducing conditions showed up to 3.5-fold higher dehalogenase activity than the CFE obtained from AW-1T cells grown on dl-2-chloropropionate under aerobic conditions. Reverse transcription-quantitative PCR showed that the l-DEX gene was expressed constitutively independently of the electron donor (haloalkanoates or acetate) or acceptor (chlorate or oxygen), whereas the expression of dehI was induced by haloalkanoates. Concurrent degradation of organic and inorganic halogenated compounds by strain AW-1T represents a unique metabolic capacity in a single bacterium, providing a new piece of the puzzle of the microbial halogen cycle.IMPORTANCE Halogenated organic and inorganic compounds are important environmental pollutants that have carcinogenic and genotoxic effects on both animals and humans. Previous research studied the degradation of organic and inorganic halogenated compounds separately but not concurrently. This study shows concurrent degradation of halogenated alkanoates and chlorate as an electron donor and acceptor, respectively, coupled to growth in a single bacterium, Pseudomonas chloritidismutans AW-1T Hence, besides biogenesis of molecular oxygen from chlorate reduction enabling a distinctive placement of strain AW-1T between aerobic and anaerobic microorganisms, we can now add another unique metabolic potential of this bacterium to the roster. The degradation of different halogenated compounds under anoxic conditions by a single bacterium is also of interest for the natural halogen cycle in different aquatic and terrestrial ecosystems where ample natural production of halogenated compounds has been documented.
Collapse
|
13
|
Kamminga T, Koehorst JJ, Vermeij P, Slagman SJ, Martins Dos Santos VAP, Bijlsma JJE, Schaap PJ. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life. Front Cell Infect Microbiol 2017; 7:31. [PMID: 28224116 PMCID: PMC5293770 DOI: 10.3389/fcimb.2017.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/23/2017] [Indexed: 11/26/2022] Open
Abstract
Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with highly sophisticated immune systems. In this study we present a genome-scale comparison, focused on identification of functional protein domains, of 80 publically available mycoplasma genomes which were consistently re-annotated using a standardized annotation pipeline embedded in a semantic framework to keep track of the data provenance. We examined the pan- and core-domainome and studied predicted functional capability in relation to host specificity and phylogenetic distance. We show that the pan- and core-domainome of mycoplasma species is closed. A comparison with the proteome of the “minimal” synthetic bacterium JCVI-Syn3.0 allowed us to classify domains and proteins essential for minimal life. Many of those essential protein domains, essential Domains of Unknown Function (DUFs) and essential hypothetical proteins are not persistent across mycoplasma genomes suggesting that mycoplasma species support alternative domain configurations that bypass their essentiality. Based on the protein domain composition, we could separate mycoplasma species infecting blood and tissue. For selected genomes of tissue infecting mycoplasmas, we could also predict whether the host is ruminant, pig or human. Functionally closely related mycoplasma species, which have a highly similar protein domain repertoire, but different hosts could not be separated. This study provides a concise overview of the functional capabilities of mycoplasma species, which can be used as a basis to further understand host-pathogen interaction or to design synthetic minimal life.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and ResearchWageningen, Netherlands; Bioprocess Technology and Support, MSD Animal HealthBoxmeer, Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | - Paul Vermeij
- Discovery and Technology, MSD Animal Health Boxmeer, Netherlands
| | - Simen-Jan Slagman
- Bioprocess Technology and Support, MSD Animal Health Boxmeer, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| |
Collapse
|
14
|
Koehorst JJ, van Dam JCJ, van Heck RGA, Saccenti E, dos Santos VAPM, Suarez-Diez M, Schaap PJ. Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci Rep 2016; 6:38699. [PMID: 27922098 PMCID: PMC5138606 DOI: 10.1038/srep38699] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 11/14/2016] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas is a highly versatile genus containing species that can be harmful to humans and plants while others are widely used for bioengineering and bioremediation. We analysed 432 sequenced Pseudomonas strains by integrating results from a large scale functional comparison using protein domains with data from six metabolic models, nearly a thousand transcriptome measurements and four large scale transposon mutagenesis experiments. Through heterogeneous data integration we linked gene essentiality, persistence and expression variability. The pan-genome of Pseudomonas is closed indicating a limited role of horizontal gene transfer in the evolutionary history of this genus. A large fraction of essential genes are highly persistent, still non essential genes represent a considerable fraction of the core-genome. Our results emphasize the power of integrating large scale comparative functional genomics with heterogeneous data for exploring bacterial diversity and versatility.
Collapse
Affiliation(s)
- Jasper J. Koehorst
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Jesse C. J. van Dam
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Ruben G. A. van Heck
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Edoardo Saccenti
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Vitor A. P. Martins dos Santos
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Maria Suarez-Diez
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| | - Peter J. Schaap
- Wageningen University, Laboratory of Systems and Synthetic Biology, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
15
|
Koehorst JJ, Saccenti E, Schaap PJ, Martins Dos Santos VAP, Suarez-Diez M. Protein domain architectures provide a fast, efficient and scalable alternative to sequence-based methods for comparative functional genomics. F1000Res 2016; 5:1987. [PMID: 27703668 PMCID: PMC5031134 DOI: 10.12688/f1000research.9416.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 11/20/2022] Open
Abstract
A functional comparative genome analysis is essential to understand the mechanisms underlying bacterial evolution and adaptation. Detection of functional orthologs using standard global sequence similarity methods faces several problems; the need for defining arbitrary acceptance thresholds for similarity and alignment length, lateral gene acquisition and the high computational cost for finding bi-directional best matches at a large scale. We investigated the use of protein domain architectures for large scale functional comparative analysis as an alternative method. The performance of both approaches was assessed through functional comparison of 446 bacterial genomes sampled at different taxonomic levels. We show that protein domain architectures provide a fast and efficient alternative to methods based on sequence similarity to identify groups of functionally equivalent proteins within and across taxonomic boundaries, and it is suitable for large scale comparative analysis. Running both methods in parallel pinpoints potential functional adaptations that may add to bacterial fitness.
Collapse
Affiliation(s)
- Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands.,LifeGlimmer GmBH, Berlin, Germany
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|