1
|
Miranda ER, Varshney P, Mazo CE, Shadiow J, Ludlow AT, Haus JM. Loss of NAMPT and SIRT2 but not SIRT1 attenuate GLO1 expression and activity in human skeletal muscle. Redox Biol 2024; 75:103300. [PMID: 39142179 PMCID: PMC11367650 DOI: 10.1016/j.redox.2024.103300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Glyoxalase I (GLO1) is the primary enzyme for detoxification of the reactive dicarbonyl methylglyoxal (MG). Loss of GLO1 promotes accumulation of MG resulting in a recapitulation of diabetic phenotypes. We previously demonstrated attenuated GLO1 protein in skeletal muscle from individuals with type 2 diabetes (T2D). However, whether GLO1 attenuation occurs prior to T2D and the mechanisms regulating GLO1 abundance in skeletal muscle are unknown. GLO1 expression and activity were determined in skeletal muscle tissue biopsies from 15 lean healthy individuals (LH, BMI: 22.4 ± 0.7) and 5 individuals with obesity (OB, BMI: 32.4 ± 1.3). GLO1 protein was attenuated by 26 ± 0.3 % in OB compared to LH skeletal muscle (p = 0.019). Similar reductions for GLO1 activity were observed (p = 0.102). NRF2 and Keap1 expression were equivocal between groups despite a 2-fold elevation in GLO1 transcripts in OB skeletal muscle (p = 0.008). GLO1 knock-down (KD) in human immortalized myotubes promoted downregulation of muscle contraction and organization proteins indicating the importance of GLO1 expression for skeletal muscle function. SIRT1 KD had no effect on GLO1 protein or activity whereas, SIRT2 KD attenuated GLO1 protein by 28 ± 0.29 % (p < 0.0001) and GLO1 activity by 42 ± 0.12 % (p = 0.0150). KD of NAMPT also resulted in attenuation of GLO1 protein (28 ± 0.069 %, p = 0.003), activity (67 ± 0.09 %, p = 0.011) and transcripts (50 ± 0.13 %, p = 0.049). Neither the provision of the NAD+ precursors NR nor NMN were able to prevent this attenuation in GLO1 protein. However, NR did augment GLO1 specific activity (p = 0.022 vs NAMPT KD). These perturbations did not alter GLO1 acetylation status. SIRT1, SIRT2 and NAMPT protein levels were all equivocal in skeletal muscle tissue biopsies from individuals with obesity and lean individuals. These data implicate NAD+-dependent regulation of GLO1 in skeletal muscle independent of altered GLO1 acetylation and provide rationale for exploring NR supplementation to rescue attenuated GLO1 abundance and activity in conditions such as obesity.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Pallavi Varshney
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Corey E Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew T Ludlow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Munk SHN, Merchut-Maya JM, Adelantado Rubio A, Hall A, Pappas G, Milletti G, Lee M, Johnsen LG, Guldberg P, Bartek J, Maya-Mendoza A. NAD + regulates nucleotide metabolism and genomic DNA replication. Nat Cell Biol 2023; 25:1774-1786. [PMID: 37957325 PMCID: PMC10709141 DOI: 10.1038/s41556-023-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/06/2023] [Indexed: 11/15/2023]
Abstract
The intricate orchestration of enzymatic activities involving nicotinamide adenine dinucleotide (NAD+) is essential for maintaining metabolic homeostasis and preserving genomic integrity. As a co-enzyme, NAD+ plays a key role in regulating metabolic pathways, such as glycolysis and Kreb's cycle. ADP-ribosyltransferases (PARPs) and sirtuins rely on NAD+ to mediate post-translational modifications of target proteins. The activation of PARP1 in response to DNA breaks leads to rapid depletion of cellular NAD+ compromising cell viability. Therefore, the levels of NAD+ must be tightly regulated. Here we show that exogenous NAD+, but not its precursors, has a direct effect on mitochondrial activity. Short-term incubation with NAD+ boosts Kreb's cycle and the electron transport chain and enhances pyrimidine biosynthesis. Extended incubation with NAD+ results in depletion of pyrimidines, accumulation of purines, activation of the replication stress response and cell cycle arrest. Moreover, a combination of NAD+ and 5-fluorouridine selectively kills cancer cells that rely on de novo pyrimidine synthesis. We propose an integrated model of how NAD+ regulates nucleotide metabolism, with relevance to healthspan, ageing and cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Arnaldur Hall
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - George Pappas
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Giacomo Milletti
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark
| | - MyungHee Lee
- DNA Replication and Cancer Group, Danish Cancer Institute, Copenhagen, Denmark
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | | | - Per Guldberg
- Molecular Diagnostics Group, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jiri Bartek
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark.
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SciLifeLab, Stockholm, Sweden.
| | | |
Collapse
|
3
|
Shadiow J, Miranda ER, Perkins RK, Mazo CE, Lin Z, Lewis KN, Mey JT, Solomon TPJ, Haus JM. Exercise-induced changes to the fiber type-specific redox state in human skeletal muscle are associated with aerobic capacity. J Appl Physiol (1985) 2023; 135:508-518. [PMID: 37471216 PMCID: PMC10538995 DOI: 10.1152/japplphysiol.00662.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of exercise involve skeletal muscle redox state alterations of nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). We determined the fiber-specific effects of acute exercise on the skeletal muscle redox state in healthy adults. Muscle biopsies were obtained from 19 participants (11 M, 8 F; 26 ± 4 yr) at baseline (fasted) and 30 min and 3 h after treadmill exercise at 80% maximal oxygen consumption (V̇o2max). Muscle samples were probed for autofluorescence of NADH (excitation at 340-360 nm) and oxidized flavoproteins (Fp; excitation at 440-470 nm) and subsequently, fiber typed to quantify the redox signatures of individual muscle fibers. Redox state was calculated as the oxidation-to-reduction redox ratio: Fp/(Fp + NADH). At baseline, pair-wise comparisons revealed that the redox ratio of myosin heavy chain (MHC) I fibers was 7.2% higher than MHC IIa (P = 0.023, 95% CI: 5.2, 9.2%) and the redox ratio of MHC IIa was 8.0% higher than MHC IIx (P = 0.035, 95% CI: 6.8, 9.2%). MHC I fibers also displayed greater NADH intensity than MHC IIx (P = 0.007) and greater Fp intensity than both MHC IIa (P = 0.019) and MHC IIx (P < 0.0001). Fp intensities increased in all fiber types (main effect, P = 0.039) but redox ratios did not change (main effect, P = 0.483) 30 min after exercise. The change in redox ratio was positively correlated with capillary density in MHC I (rho = 0.762, P = 0.037), MHC IIa fibers (rho = 0.881, P = 0.007), and modestly in MHC IIx fibers (rho = 0. 771, P = 0.103). These findings support the use of redox autofluorescence to interrogate skeletal muscle metabolism.NEW & NOTEWORTHY This study is the first to use autofluorescent imaging to describe differential redox states within human skeletal muscle fiber types with exercise. Our findings highlight an easy and efficacious technique for assessing skeletal muscle redox in humans.
Collapse
Affiliation(s)
- James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Ryan K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Corey E Mazo
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Zhen Lin
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kendell N Lewis
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| | - Jacob T Mey
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | | | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
4
|
Campelj D, Philp A. NAD + Therapeutics and Skeletal Muscle Adaptation to Exercise in Humans. Sports Med 2022; 52:91-99. [PMID: 36331703 PMCID: PMC9734213 DOI: 10.1007/s40279-022-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a vital energy intermediate in skeletal muscle. The discovery of dietary-derived NAD+ precursors has led to the rapid development of NAD+ therapeutics designed to manipulate NAD+ content in target tissues. Of those developed, nicotinamide riboside and nicotinamide mononucleotide have been reported to display health benefit in humans under clinical scenarios of NAD+ deficiency. In contrast, relatively little is known regarding the potential benefit of nicotinamide riboside and nicotinamide mononucleotide supplementation in healthy individuals, with questions remaining as to whether NAD+ therapeutics can be used to support training adaptation or improve performance in athletic populations. Examining animal and human nicotinamide riboside supplementation studies, this review discusses current evidence suggesting that NAD+ therapeutics do not alter skeletal muscle metabolism or improve athletic performance in healthy humans. Further, we will highlight potential reasons why nicotinamide riboside supplementation studies do not translate to healthy populations and discuss the futility of testing NAD+ therapeutics outside of the clinical populations where NAD+ deficiency is present.
Collapse
Affiliation(s)
- Dean Campelj
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia
| | - Andrew Philp
- grid.248902.50000 0004 0444 7512Biology of Ageing Laboratory, Centenary Institute, Missenden Road, Camperdown, Sydney, NSW 2050 Australia ,grid.248902.50000 0004 0444 7512Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW Australia ,grid.1013.30000 0004 1936 834XFaculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Sydney, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Health, School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Ultimo, NSW Australia
| |
Collapse
|
5
|
Garcia AM, Bishop EL, Li D, Jeffery LE, Garten A, Thakker A, Certo M, Mauro C, Tennant DA, Dimeloe S, Evelo CT, Coort SL, Hewison M. Tolerogenic effects of 1,25-dihydroxyvitamin D on dendritic cells involve induction of fatty acid synthesis. J Steroid Biochem Mol Biol 2021; 211:105891. [PMID: 33785437 PMCID: PMC8223499 DOI: 10.1016/j.jsbmb.2021.105891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/28/2021] [Accepted: 03/25/2021] [Indexed: 01/06/2023]
Abstract
The active form of vitamin D, 1,25-dihydroxyvitamin D (1,25D) is a potent regulator of immune function, promoting anti-inflammatory, tolerogenic T cell responses by modulating antigen presentation by dendritic cells (DC). Transcriptomic analyses indicate that DC responses to 1,25D involve changes in glycolysis, oxidative phosphorylation, electron transport and the TCA cycle. To determine the functional impact of 1,25D-mediated metabolic remodelling, human monocyte-derived DC were differentiated to immature (+vehicle, iDC), mature (+LPS, mDC), and immature tolerogenic DC (+1,25D, itolDC) and characterised for metabolic function. In contrast to mDC which showed no change in respiration, itolDC showed increased basal and ATP-linked respiration relative to iDC. Tracer metabolite analyses using 13C -labeled glucose showed increased lactate and TCA cycle metabolites. Analysis of lipophilic metabolites of 13C-glucose revealed significant incorporation of label in palmitate and palmitoleate, indicating that 1,25D promotes metabolic fatty acid synthesis in itolDC. Inhibition of fatty acid synthesis in itolDC altered itolDC morphology and suppressed expression of CD14 and IL-10 by these cells. These data indicate that the ability of 1,25D to induce tolerogenic DC involves metabolic remodelling leading to synthesis of fatty acids.
Collapse
Affiliation(s)
- Amadeo Muñoz Garcia
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Emma L Bishop
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Danyang Li
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Louisa E Jeffery
- Institute of Translational Medicine, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Antje Garten
- Universität Leipzig, Medizinische Fakultät, Leipzig, 04103, Germany
| | - Alpesh Thakker
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Claudio Mauro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sarah Dimeloe
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom; Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands; Maastricht Centre for System Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Susan L Coort
- Department of Bioinformatics-BiGCaT, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| |
Collapse
|
6
|
The effect of NAMPT deletion in projection neurons on the function and structure of neuromuscular junction (NMJ) in mice. Sci Rep 2020; 10:99. [PMID: 31919382 PMCID: PMC6952356 DOI: 10.1038/s41598-019-57085-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) plays a critical role in energy metabolism and bioenergetic homeostasis. Most NAD+ in mammalian cells is synthesized via the NAD+ salvage pathway, where nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme, converting nicotinamide into nicotinamide mononucleotide (NMN). Using a Thy1-Nampt−/− projection neuron conditional knockout (cKO) mouse, we studied the impact of NAMPT on synaptic vesicle cycling in the neuromuscular junction (NMJ), end-plate structure of NMJs and muscle contractility of semitendinosus muscles. Loss of NAMPT impaired synaptic vesicle endocytosis/exocytosis in the NMJs. The cKO mice also had motor endplates with significantly reduced area and thickness. When the cKO mice were treated with NMN, vesicle endocytosis/exocytosis was improved and endplate morphology was restored. Electrical stimulation induced muscle contraction was significantly impacted in the cKO mice in a frequency dependent manner. The cKO mice were unresponsive to high frequency stimulation (100 Hz), while the NMN-treated cKO mice responded similarly to the control mice. Transmission electron microscopy (TEM) revealed sarcomere misalignment and changes to mitochondrial morphology in the cKO mice, with NMN treatment restoring sarcomere alignment but not mitochondrial morphology. This study demonstrates that neuronal NAMPT is important for pre-/post-synaptic NMJ function, and maintaining skeletal muscular function and structure.
Collapse
|
7
|
Papalazarou V, Zhang T, Paul NR, Juin A, Cantini M, Maddocks ODK, Salmeron-Sanchez M, Machesky LM. The creatine-phosphagen system is mechanoresponsive in pancreatic adenocarcinoma and fuels invasion and metastasis. Nat Metab 2020; 2:62-80. [PMID: 32694686 DOI: 10.1038/s42255-019-0159-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023]
Abstract
Pancreatic ductal adenocarcinoma is particularly metastatic, with dismal survival rates and few treatment options. Stiff fibrotic stroma is a hallmark of pancreatic tumours, but how stromal mechanosensing affects metastasis is still unclear. Here, we show that mechanical changes in the pancreatic cancer cell environment affect not only adhesion and migration, but also ATP/ADP and ATP/AMP ratios. Unbiased metabolomic analysis reveals that the creatine-phosphagen ATP-recycling system is a major mechanosensitive target. This system depends on arginine flux through the urea cycle, which is reflected by the increased incorporation of carbon and nitrogen from L-arginine into creatine and phosphocreatine on stiff matrix. We identify that CKB is a mechanosensitive transcriptional target of YAP, and thus it increases phosphocreatine production. We further demonstrate that the creatine-phosphagen system has a role in invasive migration, chemotaxis and liver metastasis of cancer cells.
Collapse
Affiliation(s)
- Vassilis Papalazarou
- University of Glasgow Centre for the Cellular Microenvironment, Glasgow, UK
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
- CRUK Beatson Institute, Glasgow, UK
| | - Tong Zhang
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK
| | | | | | - Marco Cantini
- University of Glasgow Centre for the Cellular Microenvironment, Glasgow, UK
| | | | | | - Laura M Machesky
- University of Glasgow Institute of Cancer Sciences, Glasgow, UK.
- CRUK Beatson Institute, Glasgow, UK.
| |
Collapse
|
8
|
Metabolomic profiling identifies pathways associated with minimal residual disease in childhood acute lymphoblastic leukaemia. EBioMedicine 2019; 48:49-57. [PMID: 31631039 PMCID: PMC6838385 DOI: 10.1016/j.ebiom.2019.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background End-induction minimal residual disease (MRD) is the strongest predictor of relapse in paediatric acute lymphoblastic leukaemia (ALL), but an understanding of the biological pathways underlying early treatment response remains elusive. We hypothesized that metabolomic profiling of diagnostic bone marrow plasma could provide insights into the underlying biology of early treatment response and inform treatment strategies for high-risk patients. Methods We performed global metabolomic profiling of samples from discovery (N = 93) and replication (N = 62) cohorts treated at Texas Children's Hospital. Next, we tested the cytotoxicity of drugs targeting central carbon metabolism in cell lines and patient-derived xenograft (PDX) cells. Findings Metabolite set enrichment analysis identified altered central carbon and amino acid metabolism in MRD-positive patients from both cohorts at a 5% false discovery rate. Metabolites from these pathways were used as inputs for unsupervised hierarchical clustering. Two distinct clusters were identified, which were independently associated with MRD after adjustment for immunophenotype, cytogenetics, and NCI risk group. Three nicotinamide phosphoribosyltransferase (NAMPT) inhibitors, which reduce glycolytic/TCA cycle activities, demonstrated nanomolar-range cytotoxicity in B- and T-ALL cell lines and PDX cells. Interpretation This study provides new insights into the role of central carbon metabolism in early treatment response and as a potential targetable pathway in high-risk disease. Funding American Society of Hematology; Baylor College of Medicine Department of Paediatrics; Cancer Prevention and Research Institute of Texas; the Lynch family; St. Baldrick's Foundation with support from the Micaela's Army Foundation; United States National Institutes of Health.
Collapse
|