1
|
Wasserman S, Donovan J, Kestelyn E, Watson JA, Aarnoutse RE, Barnacle JR, Boulware DR, Chow FC, Cresswell FV, Davis AG, Dooley KE, Figaji AA, Gibb DM, Huynh J, Imran D, Marais S, Meya DB, Misra UK, Modi M, Raberahona M, Ganiem AR, Rohlwink UK, Ruslami R, Seddon JA, Skolimowska KH, Solomons RS, Stek CJ, Thuong NTT, van Crevel R, Whitaker C, Thwaites GE, Wilkinson RJ. Advancing the chemotherapy of tuberculous meningitis: a consensus view. THE LANCET. INFECTIOUS DISEASES 2025; 25:e47-e58. [PMID: 39342951 PMCID: PMC7616680 DOI: 10.1016/s1473-3099(24)00512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
Tuberculous meningitis causes death or disability in approximately 50% of affected individuals and kills approximately 78 200 adults every year. Antimicrobial treatment is based on regimens used for pulmonary tuberculosis, which overlooks important differences between lung and brain drug distributions. Tuberculous meningitis has a profound inflammatory component, yet only adjunctive corticosteroids have shown clear benefit. There is an active pipeline of new antitubercular drugs, and the advent of biological agents targeted at specific inflammatory pathways promises a new era of improved tuberculous meningitis treatment and outcomes. Yet, to date, tuberculous meningitis trials have been small, underpowered, heterogeneous, poorly generalisable, and have had little effect on policy and practice. Progress is slow, and a new approach is required. In this Personal View, a global consortium of tuberculous meningitis researchers articulate a coordinated, definitive way ahead via globally conducted clinical trials of novel drugs and regimens to advance treatment and improve outcomes for this life-threatening infection.
Collapse
Affiliation(s)
- Sean Wasserman
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Infection and Immunity, St George's University of London, London, UK
| | - Joseph Donovan
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - James A Watson
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - James R Barnacle
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK; Department of Infectious Diseases, Imperial College London, London, UK
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Felicia C Chow
- Departments of Neurology and Medicine (Infectious Diseases), University of California San Francisco, San Francisco, CA, USA
| | - Fiona V Cresswell
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; HIV Interventions, Medical Research Council-Uganda Virus Research Institute MRC and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda; Global Health and Infection, Brighton and Sussex Medical School, Brighton, UK
| | - Angharad G Davis
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK
| | - Kelly E Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anthony A Figaji
- Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Diana M Gibb
- Medical Research Council Clinical Trials Unit, London, UK
| | - Julie Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, UK
| | - Darma Imran
- Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Suzaan Marais
- Division of Neurology, Neuroscience Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - David B Meya
- Infectious Diseases Institute, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda; Department of Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Usha K Misra
- Prof Emeritus T S Misra Medical College, Vivekanand Polyclinic and Institute of Medical Sciences and Apollo Medics Super Speciality Hospital, Lucknow, India
| | - Manish Modi
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mihaja Raberahona
- University Hospital Joseph Raseta Befelatanana, Antananarivo, Madagascar
| | - Ahmad Rizal Ganiem
- Department of Neurology, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - Ursula K Rohlwink
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Division of Neurosurgery, Neuroscience Institute, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Rovina Ruslami
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran-Hasan Sadikin Hospital, Bandung, Indonesia
| | - James A Seddon
- Department of Infectious Diseases, Imperial College London, London, UK; Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Keira H Skolimowska
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; Infection and Immunity, St George's University of London, London, UK
| | - Regan S Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Cari J Stek
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | - Claire Whitaker
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford, UK
| | - Robert J Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Cape Town, South Africa; The Francis Crick Institute, London, UK; Department of Infectious Diseases, Imperial College London, London, UK.
| |
Collapse
|
2
|
Wasserman S, Harrison TS. Tuberculous Meningitis - New Approaches Needed. N Engl J Med 2023; 389:1425-1426. [PMID: 37819958 DOI: 10.1056/nejme2310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Sean Wasserman
- From the Institute for Infection and Immunity, St. George's, University of London, London
| | - Thomas S Harrison
- From the Institute for Infection and Immunity, St. George's, University of London, London
| |
Collapse
|
3
|
Elafros MA, Bwalya C, Muchanga G, Mwale M, Namukanga N, Birbeck GL, Chomba M, Mugala-Mulenga A, Kvalsund MP, Sikazwe I, Saylor DR, Winch PJ. A qualitative study of factors resulting in care delays for adults with meningitis in Zambia. Trans R Soc Trop Med Hyg 2022; 116:1138-1144. [PMID: 35653707 PMCID: PMC9717355 DOI: 10.1093/trstmh/trac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Meningitis causes significant mortality in regions with high comorbid HIV and TB. Improved outcomes are hindered by limited understanding of factors that delay adequate care. METHODS In-depth interviews of patients admitted to the University Teaching Hospital with suspected meningitis, their caregivers, doctors and nurses were conducted. Patient/caregiver interviews explored meningitis understanding, treatment prior to admission and experiences since admission. Provider interviews addressed current and prior experiences with meningitis patients and hospital barriers to care. A conceptual framework based on the Three Delays Model identified factors that delayed care. RESULTS Twenty-six patient/caregiver, eight doctor and eight nurse interviews occurred. Four delays were identified: in-home care; transportation to a health facility; clinic/first-level hospital care; and third-level hospital. Overcrowding and costly diagnostic testing delayed outpatient care; 23% of patients began with treatment inside the home due to prior negative experiences with biomedical care. Admission occurred after multiple clinic visits, where subsequent delays occurred during testing and treatment. CONCLUSIONS Delays in care from home to hospital impair quality meningitis care in Zambia. Interventions to improve outcomes must address patient, community and health systems factors. Patient/caregiver education regarding signs of meningitis and indications for care-seeking are warranted to reduce treatment delays.
Collapse
Affiliation(s)
- Melissa A Elafros
- Department of Neurology, University of Michigan, Ann Arbor, 48109 Michigan, USA
| | - Chiti Bwalya
- Maryland Global Initiatives Corporation (MGIC), Lusaka, Zambia
| | | | - Mwangala Mwale
- Maryland Global Initiatives Corporation (MGIC), Lusaka, Zambia
| | | | - Gretchen L Birbeck
- Department of Neurology, University of Rochester, Rochester, 14642 New York, USA
- University Teaching Hospitals Children's Hospital, 10101 Lusaka, Zambia
| | - Mashina Chomba
- Department of Internal Medicine, University of Zambia, School of Medicine, 10101 Lusaka, Zambia
| | | | - Michelle P Kvalsund
- Department of Neurology, University of Rochester, Rochester, 14642 New York, USA
- Department of Internal Medicine, University of Zambia, School of Medicine, 10101 Lusaka, Zambia
| | - Izukanji Sikazwe
- Centre for Infectious Disease Research in Zambia, 10101 Lusaka, Zambia
| | - Deanna R Saylor
- Department of Internal Medicine, University of Zambia, School of Medicine, 10101 Lusaka, Zambia
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Peter J Winch
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, 21205 Maryland, USA
| |
Collapse
|
4
|
Mason S, Solomons R. CSF Metabolomics of Tuberculous Meningitis: A Review. Metabolites 2021; 11:661. [PMID: 34677376 PMCID: PMC8541251 DOI: 10.3390/metabo11100661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
From the World Health Organization's global TB report for 2020, it is estimated that in 2019 at least 80,000 children (a particularly vulnerable population) developed tuberculous meningitis (TBM)-an invariably fatal disease if untreated-although this is likely an underestimate. As our latest technologies have evolved-with the unprecedented development of the various "omics" disciplines-a mountain of new data on infectious diseases have been created. However, our knowledge and understanding of infectious diseases are still trying to keep pace. Metabolites offer much biological information, but the insights they permit can be difficult to derive. This review summarizes current metabolomics studies on cerebrospinal fluid (CSF) from TBM cases and collates the metabolic data reported. Collectively, CSF metabolomics studies have identified five classes of metabolites that characterize TBM: amino acids, organic acids, nucleotides, carbohydrates, and "other". Taken holistically, the information given in this review serves to promote the mechanistic action of hypothesis generation that will drive and direct future studies on TBM.
Collapse
Affiliation(s)
- Shayne Mason
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2531, South Africa
| | - Regan Solomons
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa;
| |
Collapse
|
5
|
Dodd PJ, Osman M, Cresswell FV, Stadelman AM, Lan NH, Thuong NTT, Muzyamba M, Glaser L, Dlamini SS, Seddon JA. The global burden of tuberculous meningitis in adults: A modelling study. PLOS GLOBAL PUBLIC HEALTH 2021; 1:e0000069. [PMID: 36962116 PMCID: PMC10021871 DOI: 10.1371/journal.pgph.0000069] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
Tuberculous meningitis (TBM) is the most lethal form of tuberculosis. The incidence and mortality of TBM is unknown due to diagnostic challenges and limited disaggregated reporting of treated TBM by existing surveillance systems. We aimed to estimate the incidence and mortality of TBM in adults (15+ years) globally. Using national surveillance data from Brazil, South Africa, the United Kingdom, the United States of America, and Vietnam, we estimated the fraction of reported tuberculosis that is TBM, and the case fatality ratios for treated TBM in each of these countries. We adjusted these estimates according to findings from a systematic review and meta-analysis and applied them to World Health Organization tuberculosis notifications and estimates to model the global TBM incidence and mortality. Assuming the case detection ratio (CDR) for TBM was the same as all TB, we estimated that in 2019, 164,000 (95% UI; 129,000-199,000) adults developed TBM globally; 23% were among people living with HIV. Almost 60% of incident TBM occurred in males and 20% were in adults 25-34 years old. 70% of global TBM incidence occurred in Southeast Asia and Africa. We estimated that 78,200 (95% UI; 52,300-104,000) adults died of TBM in 2019, representing 48% of incident TBM. TBM case fatality in those treated was on average 27%. Sensitivity analysis assuming improved detection of TBM compared to other forms of TB (CDR odds ratio of 2) reduced estimated global mortality to 54,900 (95% UI; 32,200-77,700); assuming instead worse detection for TBM (CDR odds ratio of 0.5) increased estimated mortality to 125,000 (95% UI; 88,800-161,000). Our results highlight the need for improved routine TBM monitoring, especially in high burden countries. Reducing TBM incidence and mortality will be necessary to achieve the End TB Strategy targets.
Collapse
Affiliation(s)
- Peter J Dodd
- School of Health and Related Research, University of Sheffield, Sheffield, United Kingdom
| | - Muhammad Osman
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - Fiona V Cresswell
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Infectious Diseases Institute, Kampala, Uganda
- MRC-UVRI-LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Anna M Stadelman
- School of Public Health, University of Minnesota, Minneapolis, MN, United States of America
| | | | - Nguyen Thuy Thuong Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Morris Muzyamba
- Tuberculosis Section, National Infection Service, Public Health England, London, United Kingdom
| | - Lisa Glaser
- Tuberculosis Section, National Infection Service, Public Health England, London, United Kingdom
| | - Sicelo S Dlamini
- Research Information Monitoring, Evaluation, and Surveillance, National Tuberculosis Control and Management Cluster, National Department of Health, Pretoria, South Africa
| | - James A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Seddon JA, Wilkinson R, van Crevel R, Figaji A, Thwaites GE. Knowledge gaps and research priorities in tuberculous meningitis. Wellcome Open Res 2019; 4:188. [PMID: 32118120 PMCID: PMC7014926 DOI: 10.12688/wellcomeopenres.15573.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1 st and 2 nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease.
Collapse
Affiliation(s)
- James A Seddon
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, St. Mary's Campus, London, W2 1PG, UK
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Cape Town, Western Cape, 8005, South Africa
| | - Robert Wilkinson
- Infectious Diseases, Imperial College London, London, W2 1PG, UK
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, Observatory, 7925, South Africa
- Francis Crick Institute, London, NW1 1AT, UK
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anthony Figaji
- Neuroscience Institute, Division of Neurosurgery, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Clinical Research Unit, University of Oxford, Ho Chi Minh City, Vietnam
| |
Collapse
|