1
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
2
|
Sarıyer RM, Edwards AD, Needs SH. Open Hardware for Microfluidics: Exploiting Raspberry Pi Singleboard Computer and Camera Systems for Customisable Laboratory Instrumentation. BIOSENSORS 2023; 13:948. [PMID: 37887141 PMCID: PMC10605846 DOI: 10.3390/bios13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.
Collapse
|
3
|
Diep TT, Needs SH, Bizley S, Edwards AD. Rapid Bacterial Motility Monitoring Using Inexpensive 3D-Printed OpenFlexure Microscopy Allows Microfluidic Antibiotic Susceptibility Testing. MICROMACHINES 2022; 13:mi13111974. [PMID: 36422401 PMCID: PMC9699482 DOI: 10.3390/mi13111974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 05/30/2023]
Abstract
Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel 0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple sample addition. This combination was selected to closely match current standard methods for both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2 camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image quality was sufficient to detect how bacterial motility was inhibited by different concentrations of antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding detection of antibiotic resistance.
Collapse
Affiliation(s)
- Tai The Diep
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Sarah Helen Needs
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Samuel Bizley
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
| | - Alexander D. Edwards
- Reading School of Pharmacy, University of Reading, Reading RG6 6AD, UK
- Capillary Film Technology Ltd., Billingshurst RH14 9TF, UK
| |
Collapse
|
4
|
Azali MA, Mohamed S, Harun A, Hussain FA, Shamsuddin S, Johan MF. Application of Baculovirus Expression Vector system (BEV) for COVID-19 diagnostics and therapeutics: a review. J Genet Eng Biotechnol 2022; 20:98. [PMID: 35792966 PMCID: PMC9259773 DOI: 10.1186/s43141-022-00368-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND The baculovirus expression vector system has been developed for expressing a wide range of proteins, including enzymes, glycoproteins, recombinant viruses, and vaccines. The availability of the SARS-CoV-2 genome sequence has enabled the synthesis of SARS-CoV2 proteins in a baculovirus-insect cell platform for various applications. The most cloned SARS-CoV-2 protein is the spike protein, which plays a critical role in SARS-CoV-2 infection. It is available in its whole length or as subunits like S1 or the receptor-binding domain (RBD). Non-structural proteins (Nsps), another recombinant SARS-CoV-2 protein generated by the baculovirus expression vector system (BEV), are used in the identification of new medications or the repurposing of existing therapies for the treatment of COVID-19. Non-SARS-CoV-2 proteins generated by BEV for SARS-CoV-2 diagnosis or treatment include moloney murine leukemia virus reverse transcriptase (MMLVRT), angiotensin converting enzyme 2 (ACE2), therapeutic proteins, and recombinant antibodies. The recombinant proteins were modified to boost the yield or to stabilize the protein. CONCLUSION This review covers the wide application of the recombinant protein produced using the baculovirus expression technology for COVID-19 research. A lot of improvements have been made to produce functional proteins with high yields. However, there is still room for improvement and there are parts of this field of research that have not been investigated yet.
Collapse
Affiliation(s)
- Muhammad Azharuddin Azali
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200, Besut, Terengganu, Malaysia
| | - Salmah Mohamed
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, 22200, Besut, Terengganu, Malaysia
| | - Azian Harun
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Faezahtul Arbaeyah Hussain
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
5
|
Procida A, Honeychurch KC. Smartphone-based colorimetric determination of gamma-butyrolactone and gamma-hydroxybutyrate in alcoholic beverage samples. J Forensic Sci 2022; 67:1697-1703. [PMID: 35368091 PMCID: PMC9324852 DOI: 10.1111/1556-4029.15042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Gamma-hydroxybutyrate (GBH) is a popular recreational drug. Its strong sedative and amnesic effects have led to drug-facilitated sexual assaults, poisonings, overdose, and death. As a result, legislation has restricted its availability leading to GHB, consumers switching to its pro-drug, gamma-butyrolactone (GBL). Consequently, there is a growing need for methods capable of their determination in complex samples such as beverages. Previous studies have shown the possibility to colorimetrically qualitatively determine both GBH and GBL by the formation of the lactone and its reaction with hydroxylamine and ferric chloride to give a purple-colored complex. In this present investigation, we have shown the possibility of using this approach to both quantify GBL and GHB using both UV/Vis spectrometry and by the application of the camera of a smartphone to record images of the purple color developed. Via subsequent use of a downloadable free App, to extract the numerical values of the Red, Green, and Blue (RGB) color components, it was shown possible to construct a calibration curve and to quantitatively determine the concentration of the drugs present in fortified alcoholic beverage samples. It was found that by simple mathematical normalization of the RGB values the effects of camera distance and elimination could be readily overcome. Using the smartphone approach, GBL determinations on a sample of lager beer gave a mean recovery of 103% (%CV = 0.70%, n = 5) at a concentration of 0.56 mg/ml indicating the method holds promise for the determination of GBL and GHB in such samples.
Collapse
Affiliation(s)
- Anselmo Procida
- Department of Applied Sciences, Faculty of Health and Applied SciencesUniversity of the West of EnglandBristolUK
| | - Kevin C. Honeychurch
- Department of Applied Sciences, Faculty of Health and Applied SciencesUniversity of the West of EnglandBristolUK
| |
Collapse
|
6
|
Buchanan BC, Yoon JY. Microscopic Imaging Methods for Organ-on-a-Chip Platforms. MICROMACHINES 2022; 13:328. [PMID: 35208453 PMCID: PMC8879989 DOI: 10.3390/mi13020328] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Microscopic imaging is essential and the most popular method for in situ monitoring and evaluating the outcome of various organ-on-a-chip (OOC) platforms, including the number and morphology of mammalian cells, gene expression, protein secretions, etc. This review presents an overview of how various imaging methods can be used to image organ-on-a-chip platforms, including transillumination imaging (including brightfield, phase-contrast, and holographic optofluidic imaging), fluorescence imaging (including confocal fluorescence and light-sheet fluorescence imaging), and smartphone-based imaging (including microscope attachment-based, quantitative phase, and lens-free imaging). While various microscopic imaging methods have been demonstrated for conventional microfluidic devices, a relatively small number of microscopic imaging methods have been demonstrated for OOC platforms. Some methods have rarely been used to image OOCs. Specific requirements for imaging OOCs will be discussed in comparison to the conventional microfluidic devices and future directions will be introduced in this review.
Collapse
Affiliation(s)
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
7
|
Needs SH, Saiprom N, Rafaque Z, Imtiaz W, Chantratita N, Runcharoen C, Thammachote J, Anun S, Peacock SJ, Ray P, Andrews S, Edwards AD. Miniaturised broth microdilution for simplified antibiotic susceptibility testing of Gram negative clinical isolates using microcapillary devices. Analyst 2022; 147:3558-3569. [DOI: 10.1039/d2an00305h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniaturised antibiotic susceptibility testing: 100 times smaller microcapillary broth microdilution gives equivalent result to standard microplate broth microdilution.
Collapse
Affiliation(s)
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Zara Rafaque
- Department of Microbiology, Faculty of Health Sciences, Hazara University, Mansehra, Pakistan
| | - Wajiha Imtiaz
- School of Biological Sciences, University of Reading, RG6 6DX, UK
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Chakkaphan Runcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Thailand
| | - Jeeranan Thammachote
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, Thailand
| | - Suthatip Anun
- Division of Clinical Microbiology, Medical Technology Department, Bhuddhasothon Hospital, Chachoengsao, Thailand
| | | | - Partha Ray
- The Nature Conservancy, Virginia, USA
- School of Agriculture Policy and Development, University of Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, RG6 6DX, UK
| | - Alexander D. Edwards
- School of Pharmacy, University of Reading, RG6 6DX, UK
- CFT Ltd, Daux Road, Billingshurst, RH14 9SJ, UK
| |
Collapse
|