1
|
Littlecott H, Krishnaratne S, Burns J, Rehfuess E, Sell K, Klinger C, Strahwald B, Movsisyan A, Metzendorf MI, Schoenweger P, Voss S, Coenen M, Müller-Eberstein R, Pfadenhauer LM. Measures implemented in the school setting to contain the COVID-19 pandemic. Cochrane Database Syst Rev 2024; 5:CD015029. [PMID: 38695826 PMCID: PMC11064884 DOI: 10.1002/14651858.cd015029.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
BACKGROUND More than 767 million coronavirus 2019 (COVID-19) cases and 6.9 million deaths with COVID-19 have been recorded as of August 2023. Several public health and social measures were implemented in schools to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent onward transmission. We built upon methods from a previous Cochrane review to capture current empirical evidence relating to the effectiveness of school measures to limit SARS-CoV-2 transmission. OBJECTIVES To provide an updated assessment of the evidence on the effectiveness of measures implemented in the school setting to keep schools open safely during the COVID-19 pandemic. SEARCH METHODS We searched the Cochrane COVID-19 Study Register, Educational Resources Information Center, World Health Organization (WHO) COVID-19 Global literature on coronavirus disease database, and the US Department of Veterans Affairs Evidence Synthesis Program COVID-19 Evidence Reviews on 18 February 2022. SELECTION CRITERIA Eligible studies focused on measures implemented in the school setting to contain the COVID-19 pandemic, among students (aged 4 to 18 years) or individuals relating to the school, or both. We categorized studies that reported quantitative measures of intervention effectiveness, and studies that assessed the performance of surveillance measures as either 'main' or 'supporting' studies based on design and approach to handling key confounders. We were interested in transmission-related outcomes and intended or unintended consequences. DATA COLLECTION AND ANALYSIS Two review authors screened titles, abstracts and full texts. We extracted minimal data for supporting studies. For main studies, one review author extracted comprehensive data and assessed risk of bias, which a second author checked. We narratively synthesized findings for each intervention-comparator-outcome category (body of evidence). Two review authors assessed certainty of evidence. MAIN RESULTS The 15 main studies consisted of measures to reduce contacts (4 studies), make contacts safer (7 studies), surveillance and response measures (6 studies; 1 assessed transmission outcomes, 5 assessed performance of surveillance measures), and multicomponent measures (1 study). These main studies assessed outcomes in the school population (12), general population (2), and adults living with a school-attending child (1). Settings included K-12 (kindergarten to grade 12; 9 studies), secondary (3 studies), and K-8 (kindergarten to grade 8; 1 study) schools. Two studies did not clearly report settings. Studies measured transmission-related outcomes (10), performance of surveillance measures (5), and intended and unintended consequences (4). The 15 main studies were based in the WHO Regions of the Americas (12), and the WHO European Region (3). Comparators were more versus less intense measures, single versus multicomponent measures, and measures versus no measures. We organized results into relevant bodies of evidence, or groups of studies relating to the same 'intervention-comparator-outcome' categories. Across all bodies of evidence, certainty of evidence ratings limit our confidence in findings. Where we describe an effect as 'beneficial', the direction of the point estimate of the effect favours the intervention; a 'harmful' effect does not favour the intervention and 'null' shows no effect either way. Measures to reduce contact (4 studies) We grouped studies into 21 bodies of evidence: moderate- (10 bodies), low- (3 bodies), or very low-certainty evidence (8 bodies). The evidence was very low to moderate certainty for beneficial effects of remote versus in-person or hybrid teaching on transmission in the general population. For students and staff, mostly harmful effects were observed when more students participated in remote teaching. Moderate-certainty evidence showed that in the general population there was probably no effect on deaths and a beneficial effect on hospitalizations for remote versus in-person teaching, but no effect for remote versus hybrid teaching. The effects of hybrid teaching, a combination of in-person and remote teaching, were mixed. Very low-certainty evidence showed that there may have been a harmful effect on risk of infection among adults living with a school student for closing playgrounds and cafeterias, a null effect for keeping the same teacher, and a beneficial effect for cancelling extracurricular activities, keeping the same students together and restricting entry for parents and caregivers. Measures to make contact safer (7 studies) We grouped studies into eight bodies of evidence: moderate- (5 bodies), and low-certainty evidence (3 bodies). Low-certainty evidence showed that there may have been a beneficial effect of mask mandates on transmission-related outcomes. Moderate-certainty evidence showed full mandates were probably more beneficial than partial or no mandates. Evidence of a beneficial effect of physical distancing on risk of infection among staff and students was mixed. Moderate-certainty evidence showed that ventilation measures probably reduce cases among staff and students. One study (very low-certainty evidence) found that there may be a beneficial effect of not sharing supplies and increasing desk space on risk of infection for adults living with a school student, but showed there may be a harmful effect of desk shields. Surveillance and response measures (6 studies) We grouped studies into seven bodies of evidence: moderate- (3 bodies), low- (1 body), and very low-certainty evidence (3 bodies). Daily testing strategies to replace or reduce quarantine probably helped to reduce missed school days and decrease the proportion of asymptomatic school contacts testing positive (moderate-certainty evidence). For studies that assessed the performance of surveillance measures, the proportion of cases detected by rapid antigen detection testing ranged from 28.6% to 95.8%, positive predictive value ranged from 24.0% to 100.0% (very low-certainty evidence). There was probably no onward transmission from contacts of a positive case (moderate-certainty evidence) and replacing or shortening quarantine with testing may have reduced missed school days (low-certainty evidence). Multicomponent measures (1 study) Combining multiple measures may have led to a reduction in risk of infection among adults living with a student (very low-certainty evidence). AUTHORS' CONCLUSIONS A range of measures can have a beneficial effect on transmission-related outcomes, healthcare utilization and school attendance. We rated the current findings at a higher level of certainty than the original review. Further high-quality research into school measures to control SARS-CoV-2 in a wider variety of contexts is needed to develop a more evidence-based understanding of how to keep schools open safely during COVID-19 or a similar public health emergency.
Collapse
Affiliation(s)
- Hannah Littlecott
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Shari Krishnaratne
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
- Department of Disease Control, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Jacob Burns
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Eva Rehfuess
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Kerstin Sell
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Carmen Klinger
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Brigitte Strahwald
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Ani Movsisyan
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine University, Düsseldorf, Germany
| | - Petra Schoenweger
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Stephan Voss
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Michaela Coenen
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Roxana Müller-Eberstein
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Lisa M Pfadenhauer
- Institute for Medical Information Processing, Biometry and Epidemiology - IBE, Chair of Public Health and Health Services Research, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| |
Collapse
|
2
|
Zanganeh Kia H, Choi Y, Nelson D, Park J, Pouyaei A. Large eddy simulation of sneeze plumes and particles in a poorly ventilated outdoor air condition: A case study of the University of Houston main campus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164694. [PMID: 37290661 PMCID: PMC10245270 DOI: 10.1016/j.scitotenv.2023.164694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, many previous studies using computational fluid dynamics (CFD) have focused on the dynamics of air masses, which are believed to be the carriers of respiratory diseases, in enclosed indoor environments. Although outdoor air may seem to provide smaller exposure risks, it may not necessarily offer adequate ventilation that varies with different micro-climate settings. To comprehensively assess the fluid dynamics in outdoor environments and the efficiency of outdoor ventilation, we simulated the outdoor transmission of a sneeze plume in "hot spots" or areas in which the air is not quickly ventilated. We began by simulating the airflow over buildings at the University of Houston using an OpenFOAM computational fluid dynamics solver that utilized the 2019 seasonal atmospheric velocity profile from an on-site station. Next, we calculated the length of time an existing fluid is replaced by new fresh air in the domain by defining a new variable and selecting the hot spots. Finally, we conducted a large-eddy simulation of a sneeze in outdoor conditions and then simulated a sneeze plume and particles in a hot spot. The results show that fresh incoming air takes as long as 1000 s to ventilate the hot spot area in some specific regions on campus. We also found that even the slightest upward wind causes a sneeze plume to dissipate almost instantaneously at lower elevations. However, downward wind provides a stable condition for the plume, and forward wind can carry a plume even beyond six feet, the recommended social distance for preventing infection. Additionally, the simulation of sneeze droplets shows that the majority of the particles adhered to the ground or body immediately, and airborne particles can be transported more than six feet, even in a minimal amount of ambient air.
Collapse
Affiliation(s)
- Hadi Zanganeh Kia
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Yunsoo Choi
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA.
| | - Delaney Nelson
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Jincheol Park
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| | - Arman Pouyaei
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, USA
| |
Collapse
|
3
|
Zhang Y, Hui FKP, Duffield C, Saeed AM. A review of facilities management interventions to mitigate respiratory infections in existing buildings. BUILDING AND ENVIRONMENT 2022; 221:109347. [PMID: 35782231 PMCID: PMC9238148 DOI: 10.1016/j.buildenv.2022.109347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/01/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The Covid-19 pandemic reveals that the hazard of the respiratory virus was a secondary consideration in the design, development, construction, and management of public and commercial buildings. Retrofitting such buildings poses a significant challenge for building owners and facilities managers. This article reviews current research and practices in building operations interventions for indoor respiratory infection control from the perspective of facilities managers to assess the effectiveness of available solutions. This review systematically selects and synthesises eighty-six articles identified through the PRISMA process plus supplementary articles identified as part of the review process, that deal with facilities' operations and maintenance (O&M) interventions. The paper reviewed the context, interventions, mechanisms, and outcomes discussed in these articles, concluding that interventions for respiratory virus transmission in existing buildings fall into three categories under the Facilities Management (FM) discipline: Hard services (HVAC and drainage system controls) to prevent aerosol transmissions, Soft Services (cleaning and disinfection) to prevent fomite transmissions, and space management (space planning and occupancy controls) to eliminate droplet transmissions. Additionally, the research emphasised the need for FM intervention studies that examine occupant behaviours with integrated intervention results and guide FM intervention decision-making. This review expands the knowledge of FM for infection control and highlights future research opportunities.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Infrastructure Engineering, University of Melbourne, Level 6, Building 290, 700 Swanston Street, Carlton, Victoria, Australia
| | - Felix Kin Peng Hui
- Department of Infrastructure Engineering, University of Melbourne, Australia
| | - Colin Duffield
- Department of Infrastructure Engineering, University of Melbourne, Australia
| | - Ali Mohammed Saeed
- Department of Jobs, Regions and Precincts, Level 13, 1 Spring Street, Melbourne, Victoria, Australia
| |
Collapse
|