1
|
Boehm T. Understanding vertebrate immunity through comparative immunology. Nat Rev Immunol 2025; 25:141-152. [PMID: 39317775 DOI: 10.1038/s41577-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Evolutionary immunology has entered a new era. Classical studies, using just a handful of model animal species, combined with clinical observations, provided an outline of how innate and adaptive immunity work together to ensure tissue homeostasis and to coordinate the fight against infections. However, revolutionary advances in cellular and molecular biology, genomics and methods of genetic modification now offer unprecedented opportunities. They provide immunologists with the possibility to consider, at unprecedented scale, the impact of the astounding phenotypic diversity of vertebrates on immune system function. This Perspective is intended to highlight some of the many interesting, but largely unexplored, biological phenomena that are related to immune function among the roughly 60,000 existing vertebrate species. Importantly, hypotheses arising from such wide-ranging comparative studies can be tested in representative and genetically tractable species. The emerging general principles and the discovery of their evolutionarily selected variations may inspire the future development of novel therapeutic strategies for human immune disorders.
Collapse
Affiliation(s)
- Thomas Boehm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany.
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Cheung K, Rollins LA, Hammond JM, Barton K, Ferguson JM, Eyck HJF, Shine R, Edwards RJ. Repeat-Rich Regions Cause False-Positive Detection of NUMTs: A Case Study in Amphibians Using an Improved Cane Toad Reference Genome. Genome Biol Evol 2024; 16:evae246. [PMID: 39548850 PMCID: PMC11606642 DOI: 10.1093/gbe/evae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
Mitochondrial DNA (mtDNA) has been widely used in genetics research for decades. Contamination from nuclear DNA of mitochondrial origin (NUMTs) can confound studies of phylogenetic relationships and mtDNA heteroplasmy. Homology searches with mtDNA are widely used to detect NUMTs in the nuclear genome. Nevertheless, false-positive detection of NUMTs is common when handling repeat-rich sequences, while fragmented genomes might result in missing true NUMTs. In this study, we investigated different NUMT detection methods and how the quality of the genome assembly affects them. We presented an improved nuclear genome assembly (aRhiMar1.3) of the invasive cane toad (Rhinella marina) with additional long-read Nanopore and 10× linked-read sequencing. The final assembly was 3.47 Gb in length with 91.3% of tetrapod universal single-copy orthologs (n = 5,310), indicating the gene-containing regions were well assembled. We used 3 complementary methods (NUMTFinder, dinumt, and PALMER) to study the NUMT landscape of the cane toad genome. All 3 methods yielded consistent results, showing very few NUMTs in the cane toad genome. Furthermore, we expanded NUMT detection analyses to other amphibians and confirmed a weak relationship between genome size and the number of NUMTs present in the nuclear genome. Amphibians are repeat-rich, and we show that the number of NUMTs found in highly repetitive genomes is prone to inflation when using homology-based detection without filters. Together, this study provides an exemplar of how to robustly identify NUMTs in complex genomes when confounding effects on mtDNA analyses are a concern.
Collapse
Affiliation(s)
- Kelton Cheung
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Lee Ann Rollins
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Kirston Barton
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - James M Ferguson
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Harrison J F Eyck
- National Collections and Marine Infrastructure, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Richard Shine
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Richard J Edwards
- Evolution & Ecology Research Centre, School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Western Australia, Australia
| |
Collapse
|
3
|
Xu Y, Liu H, Jiang X, Zhang X, Liu J, Tian Y, Bai X, Cui S, Di S. Genome Survey of Male Rana dybowskii to Further Understand the Sex Determination Mechanism. Animals (Basel) 2024; 14:2968. [PMID: 39457898 PMCID: PMC11503867 DOI: 10.3390/ani14202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Rana dybowskii is one of the important aquaculture species in Northeast China. The fallopian tubes of female R. dybowskii are used to prepare oviductus ranae (an important traditional Chinese medicine). Therefore, R. dybowskii females have higher economical value than males. An increasing female R. dybowskii population can increase the benefits from R. dybowskii culture. However, the genome of amphibians is complex, making it difficult to investigate their sex determination mechanism. In this study, we analyzed the genome of male R. dybowskii using next-generation sequencing technology. A total of 200,046,452,400 bp of clean data were obtained, and the K-mer analysis indicated that the depth was 50×. The genome size of R. dybowskii was approximately 3585.05 M, with a heterozygosity rate, repeat sequence ratio, and genome GC content of 1.15%, 68.96%, and approximately 43.0%, respectively. In total, 270,785 contigs and 498 scaffolds were generated. The size of the contigs and scaffolds was 3,748,543,415 and 3,765,862,278 bp, respectively, with the N50 length of 31,988 and 336,385,783. The longest contig and scaffold were of the size 137,967,485 and 1,808,367,828 bp, respectively. The number of contigs and scaffolds > 10K nt was 99,620 and 451, respectively. Through annotation, 40,913 genes were obtained, including 156,609 CDS (i.e., 3.83 CDS per gene). Sequence alignment was performed with the assembled scaffolding genome in this study. Two and one fragment had high homology with two male-specific DNA molecular markers of R. dybowskii discovered previously (namely, MSM-222 and MSM-261, respectively). In addition, the Dmrt1 gene of R. dybowskii was obtained with a length of 18,893 bp by comparison and splicing. The forward primers amplifying MSM-222 and MSM-261 were located at 322-343 and 14,501-14,526 bp of Dmrt1, respectively. However, sequence alignment revealed that MSM-222 and MSM-261 were not located on Dmrt1, and only some homologous parts were observed. This indicated that in addition to Dmrt1, other important genes may play a crucial role in the sex determination mechanism of R. dybowskii. Our study provided a foundation for the subsequent high-quality genome construction and provided important genomic resources for future studies on R. dybowskii.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shiquan Cui
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (Y.X.); (H.L.); (X.J.); (X.Z.); (J.L.); (Y.T.); (X.B.)
| | - Shengwei Di
- College of Animal Science and Technology, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin 150030, China; (Y.X.); (H.L.); (X.J.); (X.Z.); (J.L.); (Y.T.); (X.B.)
| |
Collapse
|
4
|
Tang S, Peel E, Belov K, Hogg CJ, Farquharson KA. Multi-omics resources for the Australian southern stuttering frog (Mixophyes australis) reveal assorted antimicrobial peptides. Sci Rep 2024; 14:3991. [PMID: 38368484 PMCID: PMC10874372 DOI: 10.1038/s41598-024-54522-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
The number of genome-level resources for non-model species continues to rapidly expand. However, frog species remain underrepresented, with up to 90% of frog genera having no genomic or transcriptomic data. Here, we assemble the first genomic and transcriptomic resources for the recently described southern stuttering frog (Mixophyes australis). The southern stuttering frog is ground-dwelling, inhabiting naturally vegetated riverbanks in south-eastern Australia. Using PacBio HiFi long-read sequencing and Hi-C scaffolding, we generated a high-quality genome assembly, with a scaffold N50 of 369.3 Mb and 95.1% of the genome contained in twelve scaffolds. Using this assembly, we identified the mitochondrial genome, and assembled six tissue-specific transcriptomes. We also bioinformatically characterised novel sequences of two families of antimicrobial peptides (AMPs) in the southern stuttering frog, the cathelicidins and β-defensins. While traditional peptidomic approaches to peptide discovery have typically identified one or two AMPs in a frog species from skin secretions, our bioinformatic approach discovered 12 cathelicidins and two β-defensins that were expressed in a range of tissues. We investigated the novelty of the peptides and found diverse predicted activities. Our bioinformatic approach highlights the benefits of multi-omics resources in peptide discovery and contributes valuable genomic resources in an under-represented taxon.
Collapse
Affiliation(s)
- Simon Tang
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
5
|
Lv Y, Chen C, Yan C, Liao W. The paddy frog genome provides insight into the molecular adaptations and regulation of hibernation in ectotherms. iScience 2024; 27:108844. [PMID: 38261954 PMCID: PMC10797549 DOI: 10.1016/j.isci.2024.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/22/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
Amphibians, like the paddy frog (Fejervarya multistriata), have played a critical role in the transition from water to land. Hibernation is a vital survival adaptation in cold environments with limited food resources. We decoded the paddy frog genome to reveal the molecular adaptations linked to hibernation in ectotherms. The genome contained 13 chromosomes, with a significant proportion of repetitive sequences. We identified the key genes encoding the proteins of AANAT, TRPM8, EGLN1, and VEGFA essential for circadian rhythms, thermosensation, and hypoxia during hibernation by comparing the hibernator and non-hibernator genomes. Examining organ changes during hibernation revealed the central regulatory role of the brain. We identified 21 factors contributing to hibernation, involving hormone biosynthesis, protein digestion, DNA replication, and the cell cycle. These findings provide deeper insight into the complex mechanisms of ectothermic hibernation and contribute to our understanding of the broader significance of this evolutionary adaptation.
Collapse
Affiliation(s)
- Yunyun Lv
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, College of Life Science, Neijiang Normal University, Neijiang 641100, China
| | - Chuan Chen
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
| | - Chengzhi Yan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan 637009, China
- College of Panda, China West Normal Univetsity, Nanchong, Sichuan 637009, China
| |
Collapse
|
6
|
Wang Z, Luo W, Ping J, Xia Y, Ran J, Zeng X. Large X-effects are absent in torrent frogs with nascent sex chromosomes. Mol Ecol 2023; 32:5338-5349. [PMID: 37602937 DOI: 10.1111/mec.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Sex chromosomes are popularized as a special role in driving speciation. However, the empirical evidence from natural population processes has been limited to organisms with degenerated sex chromosomes, where hemizygosity is mainly considered to act as the driver of reproductive isolation. Here, we examined several hybrid zones of torrent frog Amolops mantzorum species complex, using an approach by mapping species-diagnostic loci onto the reference genome to compare sex-linked versus autosomal patterns of introgression. We find little support in sex-linked incompatibilities for large X-effects for these populations in hybrid zones with homomorphic sex chromosomes, due to the absence of the hemizygous effects. As expected, the large X-effects were not found in those with heteromorphic but newly evolved sex chromosomes, owing to the absence of strong genetic differences between X and Y chromosomes. The available data so far on amphibians suggest little role for sex-linked genes in speciation. The large X-effects in those with nascent sex chromosomes may not be as ubiquitous as presumed across the animal kingdom.
Collapse
Affiliation(s)
- Ziwen Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Luo
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Jun Ping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jianghong Ran
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
7
|
Falcon F, Tanaka EM, Rodriguez-Terrones D. Transposon waves at the water-to-land transition. Curr Opin Genet Dev 2023; 81:102059. [PMID: 37343338 DOI: 10.1016/j.gde.2023.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023]
Abstract
The major transitions in vertebrate evolution are associated with significant genomic reorganizations. In contrast to the evolutionary processes that occurred at the origin of vertebrates or prior to the radiation of teleost fishes, no whole-genome duplication events occurred during the water-to-land transition, and it remains an open question how did genome dynamics contribute to this prominent evolutionary event. Indeed, the recent sequencing of sarcopterygian and amphibian genomes has revealed that the extant lineages immediately preceding and succeeding this transition harbor an exceptional number of transposable elements and it is tempting to speculate that these sequences might have catalyzed the adaptations that enabled vertebrates to venture into land. Here, we review the genome dynamics associated with the major transitions in vertebrate evolution and discuss how the highly repetitive genomic landscapes revealed by recent efforts to characterize the genomes of amphibians and sarcopterygians argue for turbulent genome dynamics occurring before the water-to-land transition and possibly enabling it.
Collapse
Affiliation(s)
- Francisco Falcon
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria. https://twitter.com/@FcoJFalcon
| | - Elly M Tanaka
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| | - Diego Rodriguez-Terrones
- Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030, Vienna, Austria.
| |
Collapse
|
8
|
Zuo B, Nneji LM, Sun YB. Comparative genomics reveals insights into anuran genome size evolution. BMC Genomics 2023; 24:379. [PMID: 37415107 PMCID: PMC10324214 DOI: 10.1186/s12864-023-09499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Amphibians, particularly anurans, display an enormous variation in genome size. Due to the unavailability of whole genome datasets in the past, the genomic elements and evolutionary causes of anuran genome size variation are poorly understood. To address this, we analyzed whole-genome sequences of 14 anuran species ranging in size from 1.1 to 6.8 Gb. By annotating multiple genomic elements, we investigated the genomic correlates of anuran genome size variation and further examined whether the genome size relates to habitat types. RESULTS Our results showed that intron expansions or contraction and Transposable Elements (TEs) diversity do not contribute significantly to genome size variation. However, the recent accumulation of transposable elements (TEs) and the lack of deletion of ancient TEs primarily accounted for the evolution of anuran genome sizes. Our study showed that the abundance and density of simple repeat sequences positively correlate with genome size. Ancestral state reconstruction revealed that genome size exhibits a taxon-specific pattern of evolution, with families Bufonidae and Pipidae experiencing extreme genome expansion and contraction events, respectively. Our result showed no relationship between genome size and habitat types, although large genome-sized species are predominantly found in humid habitats. CONCLUSIONS Overall, our study identified the genomic element and their evolutionary dynamics accounting for anuran genome size variation, thus paving a path to a greater understanding of the size evolution of the genome in amphibians.
Collapse
Affiliation(s)
- Bin Zuo
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Lotanna Micah Nneji
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yan-Bo Sun
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
9
|
Parallel Evolution of Sex-Linked Genes across XX/XY and ZZ/ZW Sex Chromosome Systems in the Frog Glandirana rugosa. Genes (Basel) 2023; 14:genes14020257. [PMID: 36833183 PMCID: PMC9956060 DOI: 10.3390/genes14020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Genetic sex-determination features male (XX/XY) or female heterogamety (ZZ/ZW). To identify similarities and differences in the molecular evolution of sex-linked genes between these systems, we directly compared the sex chromosome systems existing in the frog Glandirana rugosa. The heteromorphic X/Y and Z/W sex chromosomes were derived from chromosomes 7 (2n = 26). RNA-Seq, de novo assembly, and BLASTP analyses identified 766 sex-linked genes. These genes were classified into three different clusters (XW/YZ, XY/ZW, and XZ/YW) based on sequence identities between the chromosomes, probably reflecting each step of the sex chromosome evolutionary history. The nucleotide substitution per site was significantly higher in the Y- and Z-genes than in the X- and W- genes, indicating male-driven mutation. The ratio of nonsynonymous to synonymous nucleotide substitution rates was higher in the X- and W-genes than in the Y- and Z-genes, with a female bias. Allelic expression in gonad, brain, and muscle was significantly higher in the Y- and W-genes than in the X- and Z-genes, favoring heterogametic sex. The same set of sex-linked genes showed parallel evolution across the two distinct systems. In contrast, the unique genomic region of the sex chromosomes demonstrated a difference between the two systems, with even and extremely high expression ratios of W/Z and Y/X, respectively.
Collapse
|
10
|
Andrade P, Lyra ML, Zina J, Bastos DFO, Brunetti AE, Baêta D, Afonso S, Brunes TO, Taucce PPG, Carneiro M, Haddad CFB, Sequeira F. Draft genome and multi-tissue transcriptome assemblies of the Neotropical leaf-frog Phyllomedusa bahiana. G3 (BETHESDA, MD.) 2022; 12:jkac270. [PMID: 36205610 PMCID: PMC9713437 DOI: 10.1093/g3journal/jkac270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 12/05/2022]
Abstract
Amphibians are increasingly threatened worldwide, but the availability of genomic resources that could be crucial for implementing informed conservation practices lags well behind that for other vertebrate groups. Here, we describe draft de novo genome, mitogenome, and transcriptome assemblies for the Neotropical leaf-frog Phyllomedusa bahiana native to the Brazilian Atlantic Forest and Caatinga. We used a combination of PacBio long reads and Illumina sequencing to produce a 4.74-Gbp contig-level genome assembly, which has a contiguity comparable to other recent nonchromosome level assemblies. The assembled mitogenome comprises 16,239 bp and the gene content and arrangement are similar to other Neobratrachia. RNA-sequencing from 8 tissues resulted in a highly complete (86.3%) reference transcriptome. We further use whole-genome resequencing data from P. bahiana and from its sister species Phyllomedusa burmeisteri, to demonstrate how our assembly can be used as a backbone for population genomics studies within the P. burmeisteri species group. Our assemblies thus represent important additions to the catalog of genomic resources available from amphibians.
Collapse
Affiliation(s)
- Pedro Andrade
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Mariana L Lyra
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Juliana Zina
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, Brazil
| | - Deivson F O Bastos
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié 45206-190, Brazil
| | - Andrés E Brunetti
- Laboratory of Evolutionary Genetics, Institute of Subtropical Biology, National University of Misiones (UNaM-CONICET) Posadas N3300LQH, Misiones, Argentina
| | - Délio Baêta
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Sandra Afonso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Tuliana O Brunes
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Pedro P G Taucce
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Miguel Carneiro
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| | - Célio F B Haddad
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Fernando Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal
| |
Collapse
|
11
|
Liedtke HC, Cruz F, Gómez-Garrido J, Fuentes Palacios D, Marcet-Houben M, Gut M, Alioto T, Gabaldón T, Gomez-Mestre I. Chromosome-level assembly, annotation and phylome of Pelobates cultripes, the western spadefoot toad. DNA Res 2022; 29:6588074. [PMID: 35583263 PMCID: PMC9164646 DOI: 10.1093/dnares/dsac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Genomic resources for amphibians are still hugely under-represented in vertebrate genomic research, despite being a group of major interest for ecology, evolution and conservation. Amphibians constitute a highly threatened group of vertebrates, present a vast diversity in reproductive modes, are extremely diverse in morphology, occupy most ecoregions of the world, and present the widest range in genome sizes of any major group of vertebrates. We combined Illumina, Nanopore and Hi-C sequencing technologies to assemble a chromosome-level genome sequence for an anuran with a moderate genome size (assembly span 3.09 Gb); Pelobates cultripes, the western spadefoot toad. The genome has an N50 length of 330 Mb with 98.6% of the total sequence length assembled into 14 super scaffolds, and 87.7% complete BUSCO genes. We use published transcriptomic data to provide annotations, identifying 32,684 protein-coding genes. We also reconstruct the P. cultripes phylome and identify 2,527 gene expansions. We contribute the first draft of the genome of the western spadefoot toad, P. cultripes. This species represents a relatively basal lineage in the anuran tree with an interesting ecology and a high degree of developmental plasticity, and thus is an important resource for amphibian genomic research.
Collapse
Affiliation(s)
- Hans Christoph Liedtke
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Diego Fuentes Palacios
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS) , 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST) , 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA) , Barcelona, Spain
| | - Ivan Gomez-Mestre
- Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (CSIC) , 41092 Sevilla, Spain
| |
Collapse
|