1
|
Suzuki M, Funayama T, Suzuki M, Kobayashi Y. Radiation-quality-dependent bystander cellular effects induced by heavy-ion microbeams through different pathways. JOURNAL OF RADIATION RESEARCH 2023; 64:824-832. [PMID: 37658690 PMCID: PMC10516730 DOI: 10.1093/jrr/rrad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/06/2023] [Indexed: 09/03/2023]
Abstract
We investigated the radiation-quality-dependent bystander cellular effects using heavy-ion microbeams with different ion species. The heavy-ion microbeams were produced in Takasaki Ion Accelerators for Advanced Radiation Application, National Institutes for Quantum Science and Technology. Carbon (12C5+, 220 MeV), neon (20Ne7+, 260 MeV) and argon (40Ar13+, 460 MeV) ions were used as the microbeams, collimating the beam size with a diameter of 20 μm. After 0.5 and 3 h of irradiation, the surviving fractions (SFs) are significantly lower in cells irradiated with carbon ions without a gap-junction inhibitor than those irradiated with the inhibitor. However, the same SFs with no cell killing were found with and without the inhibitor at 24 h. Conversely, no cell-killing effect was observed in argon-ion-irradiated cells at 0.5 and 3 h; however, significantly low SFs were found at 24 h with and without the inhibitor, and the effect was suppressed using vitamin C and not dimethyl sulfoxide. The mutation frequency (MF) in cells irradiated with carbon ions was 8- to 6-fold higher than that in the unirradiated control at 0.5 and 3 h; however, no mutation was observed in cells treated with the gap-junction inhibitor. At 24 h, the MFs induced by each ion source were 3- to 5-fold higher and the same with and without the inhibitor. These findings suggest that the bystander cellular effects depend on the biological endpoints, ion species and time after microbeam irradiations with different pathways.
Collapse
Affiliation(s)
- Masao Suzuki
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Chiba-shi, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Project “Quantum-Applied Biotechnology”, Department of Quantum-Applied Biosciences, Takasaki Institute of Advanced Quantum Science, Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology, 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292, Japan
| |
Collapse
|
2
|
Yokoyama A, Kada W, Sakai M, Miura K, Hanaizumi O. Evaluation of a therapeutic carbon beam using a G2000 glass scintillator. Appl Radiat Isot 2023; 196:110753. [PMID: 36966616 DOI: 10.1016/j.apradiso.2023.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
A G2000 glass scintillator (G2000-SC) was used to determine the carbon profile and range of a 290-MeV/n carbon beam used in heavy-ion therapy because it was sensitive enough to detect single-ion hits at hundreds of mega electron Volts. An electron-multiplying charge-coupled device camera was used to detect the ion luminescence generated during the irradiation of G2000-SC with the beam. The resulting image showed that the position of the Bragg peak can be determined. The beam passes through the 112-mm-thick water phantom and stops 5.73 ± 0.03 mm from the incident side to the G2000-SC. Additionally, the location of the Bragg peak was simulated when irradiating G2000-SC with the beam using the Monte Carlo code particle and heavy ion transport system (PHITS). Simulation results show that the incident beam stops at 5.60 mm after entering G2000-SC. The beam stop location obtained from images and the PHITS code is defined at 80% distal fall-off from the Bragg peak position. Consequently, G2000-SC provided effective profile measurements of therapeutic carbon beams.
Collapse
Affiliation(s)
- Akihito Yokoyama
- Department of Advanced Photon Research, Kansai Photon Science Institute, National Institutes for Quantum Science and Technology (QST), 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
| | - Wataru Kada
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Makoto Sakai
- Heavy Ion Medical Center, Gunma University, 3-39-22 Showa-Machi, Maebashi, Gunma, 371-8511, Japan
| | - Kenta Miura
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Osamu Hanaizumi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
3
|
Nagata K, Ohashi K, Hashimoto C, Sayed AEDH, Yasuda T, Dutta B, Kajihara T, Mitani H, Suzuki M, Funayama T, Oda S, Watanabe-Asaka T. Responses of hematopoietic cells after ionizing-irradiation in anemic adult medaka ( Oryzias latipes). Int J Radiat Biol 2023; 99:663-672. [PMID: 35939385 DOI: 10.1080/09553002.2022.2110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE Hematopoietic tissues of vertebrates are highly radiation sensitive and the effects of ionizing radiation on the hematopoiesis have been studied in mammals and teleosts for decades. In this study, radiation responses in the kidney, the main hematopoietic organ in teleosts, were investigated in Japanese medaka (Oryzias latipes), which has been a model animal and a large body of knowledge has been accumulated in radiation biology. METHODS Kidney, the main hematopoietic tissue of adult medaka fish, was locally irradiated using proton and carbon ion beams irradiation system of Takasaki Ion Accelerator for Advanced Radiation Application (TIARA), QST, and the effects on peripheral blood cells and histology of the kidney were investigated. RESULTS When only kidneys were locally irradiated with proton or carbon ion beam (15 Gy), the hematopoietic cells in the irradiated kidney and cell density in the peripheral blood decreased 7 days after the irradiation in the same manner as after the whole-body irradiation with γ-rays (15 Gy). These results demonstrate that direct irradiation of the hematopoietic cells in the kidney induced cell death and/or cell cycle arrest and stopped the supply of erythroid cells. Then, the cell density in the peripheral blood recovered to the control level within 4 days and 7 days after the γ-ray and proton beam irradiation (15 Gy), respectively, while the cell density in the peripheral blood did not recover after the carbon ion beam irradiation (15 Gy). The hematopoietic cells in the irradiated kidneys temporarily decreased and recovered to the control level within 21 days after the γ-ray or proton beam irradiation (15 Gy), while it did not recover after the carbon ion beam irradiation (15 Gy). In contrast, the recovery of the cell density in the peripheral blood delayed when anemic medaka were irradiated 1 day after the administration of phenylhydrazine. With and without γ-ray irradiation, a large number of hematopoietic cells was still proliferating in the kidney 7 days after the anemia induction. CONCLUSIONS The results obtained strongly suggest that the hematopoietic stem cells in medaka kidney prioritize to proliferate and increase peripheral blood cells to eliminate anemia, even when they are damaged by high-dose irradiation.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), National Institute of Radiological Sciences, Chiba, Japan
| | - Keita Ohashi
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Chika Hashimoto
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Alaa El-Din Hamid Sayed
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Zoology department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Takako Yasuda
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
- Department of Chemical and Biological Sciences, Japan Women's University, Tokyo, Japan
| | - Bibek Dutta
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Takayuki Kajihara
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, QST, Takasaki, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, QST, Takasaki, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Japan
- Division of Physiology, Faculty of Medicine, Tohoku Medical Pharmaceutical University, Sendai, Japan
| |
Collapse
|
4
|
Zhang Z, Li K, Hong M. Radiation-Induced Bystander Effect and Cytoplasmic Irradiation Studies with Microbeams. BIOLOGY 2022; 11:biology11070945. [PMID: 36101326 PMCID: PMC9312136 DOI: 10.3390/biology11070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/02/2022]
Abstract
Simple Summary Microbeams are useful tools in studies on non-target effects, such as the radiation-induced bystander effect, and responses related to cytoplasmic irradiation. A micrometer or even sub-micrometer-level beam size enables the precise delivery of radiation energy to a specific target. Here we summarize the observations of the bystander effect and the cytoplasmic irradiation-related effect using different kinds of microbeam irradiators as well as discuss the cellular and molecular mechanisms that are involved in these responses. Non-target effects may increase the detrimental effect caused by radiation, so a more comprehensive knowledge of the process will enable better evaluation of the damage resulting from irradiation. Abstract Although direct damage to nuclear DNA is considered as the major contributing event that leads to radiation-induced effects, accumulating evidence in the past two decades has shown that non-target events, in which cells are not directly irradiated but receive signals from the irradiated cells, or cells irradiated at extranuclear targets, may also contribute to the biological consequences of exposure to ionizing radiation. With a beam diameter at the micrometer or sub-micrometer level, microbeams can precisely deliver radiation, without damaging the surrounding area, or deposit the radiation energy at specific sub-cellular locations within a cell. Such unique features cannot be achieved by other kinds of radiation settings, hence making a microbeam irradiator useful in studies of a radiation-induced bystander effect (RIBE) and cytoplasmic irradiation. Here, studies on RIBE and different responses to cytoplasmic irradiation using microbeams are summarized. Possible mechanisms related to the bystander effect, which include gap-junction intercellular communications and soluble signal molecules as well as factors involved in cytoplasmic irradiation-induced events, are also discussed.
Collapse
Affiliation(s)
- Ziqi Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Kui Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; (Z.Z.); (K.L.)
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85280901
| |
Collapse
|
5
|
A simple microscopy setup for visualizing cellular responses to DNA damage at particle accelerator facilities. Sci Rep 2021; 11:14528. [PMID: 34267233 PMCID: PMC8282881 DOI: 10.1038/s41598-021-92950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Cellular responses to DNA double-strand breaks (DSBs) not only promote genomic integrity in healthy tissues, but also largely determine the efficacy of many DNA-damaging cancer treatments, including X-ray and particle therapies. A growing body of evidence suggests that activation of the mechanisms that detect, signal and repair DSBs may depend on the complexity of the initiating DNA lesions. Studies focusing on this, as well as on many other radiobiological questions, require reliable methods to induce DSBs of varying complexity, and to visualize the ensuing cellular responses. Accelerated particles of different energies and masses are exceptionally well suited for this task, due to the nature of their physical interactions with the intracellular environment, but visualizing cellular responses to particle-induced damage - especially in their early stages - at particle accelerator facilities, remains challenging. Here we describe a straightforward approach for real-time imaging of early response to particle-induced DNA damage. We rely on a transportable setup with an inverted fluorescence confocal microscope, tilted at a small angle relative to the particle beam, such that cells can be irradiated and imaged without any microscope or beamline modifications. Using this setup, we image and analyze the accumulation of fluorescently-tagged MDC1, RNF168 and 53BP1-key factors involved in DSB signalling-at DNA lesions induced by 254 MeV α-particles. Our results provide a demonstration of technical feasibility and reveal asynchronous initiation of accumulation of these proteins at different individual DSBs.
Collapse
|
6
|
Yasuda T, Funayama T, Nagata K, Li D, Endo T, Jia Q, Suzuki M, Ishikawa Y, Mitani H, Oda S. Collimated Microbeam Reveals that the Proportion of Non-Damaged Cells in Irradiated Blastoderm Determines the Success of Development in Medaka ( Oryzias latipes) Embryos. BIOLOGY 2020; 9:E447. [PMID: 33291358 PMCID: PMC7762064 DOI: 10.3390/biology9120447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
It has been widely accepted that prenatal exposure to ionizing radiation (IR) can affect embryonic and fetal development in mammals, depending on dose and gestational age of the exposure, however, the precise machinery underlying the IR-induced disturbance of embryonic development is still remained elusive. In this study, we examined the effects of gamma-ray irradiation on blastula embryos of medaka and found transient delay of brain development even when they hatched normally with low dose irradiation (2 and 5 Gy). In contrast, irradiation of higher dose of gamma-rays (10 Gy) killed the embryos with malformations before hatching. We then conducted targeted irradiation of blastoderm with a collimated carbon-ion microbeam. When a part (about 4, 10 and 25%) of blastoderm cells were injured by lethal dose (50 Gy) of carbon-ion microbeam irradiation, loss of about 10% or less of blastoderm cells induced only the transient delay of brain development and the embryos hatched normally, whereas embryos with about 25% of their blastoderm cells were irradiated stopped development at neurula stage and died. These findings strongly suggest that the developmental disturbance in the IR irradiated embryos is determined by the proportion of severely injured cells in the blastoderm.
Collapse
Affiliation(s)
- Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Duolin Li
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Takuya Endo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Qihui Jia
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Gunma 370-1292, Japan; (T.F.); (M.S.)
| | - Yuji Ishikawa
- National Institute of Radiological Sciences, Quantum Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology (QST), Chiba 263-8555, Japan;
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan; (K.N.); (D.L.); (T.E.); (Q.J.); (H.M.); (S.O.)
| |
Collapse
|
7
|
Heavy-Ion Microbeams for Biological Science: Development of System and Utilization for Biological Experiments in QST-Takasaki. QUANTUM BEAM SCIENCE 2019. [DOI: 10.3390/qubs3020013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Target irradiation of biological material with a heavy-ion microbeam is a useful means to analyze the mechanisms underlying the effects of heavy-ion irradiation on cells and individuals. At QST-Takasaki, there are two heavy-ion microbeam systems, one using beam collimation and the other beam focusing. They are installed on the vertical beam lines of the azimuthally-varying-field cyclotron of the TIARA facility for analyzing heavy-ion radiation effects on biological samples. The collimating heavy-ion microbeam system is used in a wide range of biological research not only in regard to cultured cells but also small individuals, such as silkworms, nematode C. elegans, and medaka fish. The focusing microbeam system was designed and developed to perform more precise target irradiation that cannot be achieved through collimation. This review describes recent updates of the collimating heavy ion microbeam system and the research performed using it. In addition, a brief outline of the focusing microbeam system and current development status is described.
Collapse
|
8
|
Suzuki M, Sakashita T, Hattori Y, Yokota Y, Kobayashi Y, Funayama T. Development of ultra-thin chips for immobilization of Caenorhabditis elegans in microfluidic channels during irradiation and selection of buffer solution to prevent dehydration. J Neurosci Methods 2018; 306:32-37. [DOI: 10.1016/j.jneumeth.2018.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/30/2018] [Indexed: 11/30/2022]
|
9
|
Suzuki M, Hattori Y, Sakashita T, Yokota Y, Kobayashi Y, Funayama T. Region-specific irradiation system with heavy-ion microbeam for active individuals of Caenorhabditis elegans. JOURNAL OF RADIATION RESEARCH 2017; 58:881-886. [PMID: 28992248 PMCID: PMC5710645 DOI: 10.1093/jrr/rrx043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Radiation may affect essential functions and behaviors such as locomotion, feeding, learning and memory. Although whole-body irradiation has been shown to reduce motility in the nematode Caenorhabditis elegans, the detailed mechanism responsible for this effect remains unknown. Targeted irradiation of the nerve ring responsible for sensory integration and information processing would allow us to determine whether the reduction of motility following whole-body irradiation reflects effects on the central nervous system or on the muscle cells themselves. We therefore addressed this issue using a collimating microbeam system. However, radiation targeting requires the animal to be immobilized, and previous studies have anesthetized animals to prevent their movement, thus making it impossible to assess their locomotion immediately after irradiation. We developed a method in which the animal was enclosed in a straight, microfluidic channel in a polydimethylsiloxane chip to inhibit free motion during irradiation, thus allowing locomotion to be observed immediately after irradiation. The head region (including the central nervous system), mid region around the intestine and uterus, and tail region were targeted independently. Each region was irradiated with 12 000 carbon ions (12C; 18.3 MeV/u; linear energy transfer = 106.4 keV/μm), corresponding to 500 Gy at a φ20 μm region. Motility was significantly decreased by whole-body irradiation, but not by irradiation of any of the individual regions, including the central nervous system. This suggests that radiation inhibits locomotion by a whole-body mechanism, potentially involving motoneurons and/or body-wall muscle cells, rather than affecting motor control via the central nervous system and the stimulation response.
Collapse
Affiliation(s)
- Michiyo Suzuki
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuya Hattori
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
- Present address: Department of Systems and Control Engineering, School of Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Tetsuya Sakashita
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuichiro Yokota
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yasuhiko Kobayashi
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Tomoo Funayama
- Department of Radiation–Applied Biology Research, Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology (QST-Takasaki), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
10
|
Abscopal Activation of Microglia in Embryonic Fish Brain Following Targeted Irradiation with Heavy-Ion Microbeam. Int J Mol Sci 2017; 18:ijms18071428. [PMID: 28677658 PMCID: PMC5535919 DOI: 10.3390/ijms18071428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia remove apoptotic cells by phagocytosis when the central nervous system is injured in vertebrates. Ionizing irradiation (IR) induces apoptosis and microglial activation in embryonic midbrain of medaka (Oryzias latipes), where apolipoprotein E (ApoE) is upregulated in the later phase of activation of microglia In this study, we found that another microglial marker, l-plastin (lymphocyte cytosolic protein 1), was upregulated at the initial phase of the IR-induced phagocytosis when activated microglia changed their morphology and increased motility to migrate. We further conducted targeted irradiation to the embryonic midbrain using a collimated microbeam of carbon ions (250 μm diameter) and found that the l-plastin upregulation was induced only in the microglia located in the irradiated area. Then, the activated microglia might migrate outside of the irradiated area and spread through over the embryonic brain, expressing ApoE and with activated morphology, for longer than 3 days after the irradiation. These findings suggest that l-plastin and ApoE can be the biomarkers of the activated microglia in the initial and later phase, respectively, in the medaka embryonic brain and that the abscopal and persisted activation of microglia by IR irradiation could be a cause of the abscopal and/or adverse effects following irradiation.
Collapse
|
11
|
Irradiation Facilities of the Takasaki Advanced Radiation Research Institute. QUANTUM BEAM SCIENCE 2017. [DOI: 10.3390/qubs1010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Nagata K, Hashimoto C, Watanabe-Asaka T, Itoh K, Yasuda T, Ohta K, Oonishi H, Igarashi K, Suzuki M, Funayama T, Kobayashi Y, Nishimaki T, Katsumura T, Oota H, Ogawa M, Oga A, Ikemoto K, Itoh H, Kutsuna N, Oda S, Mitani H. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model. Sci Rep 2016; 6:28691. [PMID: 27345436 PMCID: PMC4922018 DOI: 10.1038/srep28691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/01/2022] Open
Abstract
Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Chika Hashimoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazusa Itoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kousaku Ohta
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hisako Oonishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Yasuhiko Kobayashi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Toshiyuki Nishimaki
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Motoyuki Ogawa
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Atsunori Oga
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenzo Ikemoto
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,LPixel Inc., Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
13
|
Matsumoto Y, Hamada N, Aoki-Nakano M, Funayama T, Sakashita T, Wada S, Kakizaki T, Kobayashi Y, Furusawa Y. Dependence of the bystander effect for micronucleus formation on dose of heavy-ion radiation in normal human fibroblasts. RADIATION PROTECTION DOSIMETRY 2015; 166:152-156. [PMID: 26242975 DOI: 10.1093/rpd/ncv177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ionising radiation-induced bystander effects are well recognised, but its dependence on dose or linear energy transfer (LET) is still a matter of debate. To test this, 49 sites in confluent cultures of AG01522D normal human fibroblasts were targeted with microbeams of carbon (103 keV µm(-1)), neon (375 keV µm(-1)) and argon ions (1260 keV µm(-1)) and evaluated for the bystander-induced formation of micronucleus that is a kind of a chromosome aberration. Targeted exposure to neon and argon ions significantly increased the micronucleus frequency in bystander cells to the similar extent irrespective of the particle numbers per site of 1-6. In contrast, the bystander micronucleus frequency increased with increasing the number of carbon-ion particles in a range between 1 and 3 particles per site and was similar in a range between 3 and 8 particles per site. These results suggest that the bystander effect of heavy ions for micronucleus formation depends on dose.
Collapse
Affiliation(s)
- Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan Present Address: Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8576, Japan
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Komae, Tokyo 201-8511, Japan
| | - Mizuho Aoki-Nakano
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tetsuya Sakashita
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Seiichi Wada
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Takehiko Kakizaki
- Department of Veterinary Medicine, Kitasato University Graduate School of Veterinary Medicine and Animal Sciences, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
14
|
Barberet P, Seznec H. Advances in microbeam technologies and applications to radiation biology. RADIATION PROTECTION DOSIMETRY 2015; 166:182-187. [PMID: 25911406 DOI: 10.1093/rpd/ncv192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Charged-particle microbeams (CPMs) allow the targeting of sub-cellular compartments with a counted number of energetic ions. While initially developed in the late 1990s to overcome the statistical fluctuation on the number of traversals per cell inevitably associated with broad beam irradiations, CPMs have generated a growing interest and are now used in a wide range of radiation biology studies. Besides the study of the low-dose cellular response that has prevailed in the applications of these facilities for many years, several new topics have appeared recently. By combining their ability to generate highly clustered damages in a micrometric volume with immunostaining or live-cell GFP labelling, a huge potential for monitoring radiation-induced DNA damage and repair has been introduced. This type of studies has pushed end-stations towards advanced fluorescence microscopy techniques, and several microbeam lines are currently equipped with the state-of-the-art time-lapse fluorescence imaging microscopes. In addition, CPMs are nowadays also used to irradiate multicellular models in a highly controlled way. This review presents the latest developments and applications of charged-particle microbeams to radiation biology.
Collapse
Affiliation(s)
- P Barberet
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| | - H Seznec
- University of Bordeaux, CENBG, UMR 5797, Gradignan F-33170, France CNRS, IN2P3, CENBG, UMR 5797, Gradignan F-33170, France
| |
Collapse
|
15
|
Tomita M, Matsumoto H, Funayama T, Yokota Y, Otsuka K, Maeda M, Kobayashi Y. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:36-43. [PMID: 26256626 DOI: 10.1016/j.lssr.2015.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time after irradiation.
Collapse
Affiliation(s)
- Masanori Tomita
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan.
| | - Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yuichiro Yokota
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Kensuke Otsuka
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan
| | - Munetoshi Maeda
- Radiation Safety Research Center, Central Research Institute of Electric Power Industry, 2-11-1 Iwado Kita, Komae, Tokyo 201-8511, Japan; Proton Medical Research Group, Research and Development Department, The Wakasa Wan Energy Research Center, 64-52-1 Nagatani, Tsuruga-shi, Fukui 914-0192, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Radiation Biology Research Division, Quantum Beam Science Center, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| |
Collapse
|
16
|
Takahashi A, Kubo M, Ma H, Nakagawa A, Yoshida Y, Isono M, Kanai T, Ohno T, Furusawa Y, Funayama T, Kobayashi Y, Nakano T. Nonhomologous end-joining repair plays a more important role than homologous recombination repair in defining radiosensitivity after exposure to high-LET radiation. Radiat Res 2014; 182:338-44. [PMID: 25117625 DOI: 10.1667/rr13782.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
DNA double-strand breaks (DSBs) induced by ionizing radiation pose a major threat to cell survival. The cell can respond to the presence of DSBs through two major repair pathways: homologous recombination (HR) and nonhomologous end joining (NHEJ). Higher levels of cell death are induced by high-linear energy transfer (LET) radiation when compared to low-LET radiation, even at the same physical doses, due to less effective and efficient DNA repair. To clarify whether high-LET radiation inhibits all repair pathways or specifically one repair pathway, studies were designed to examine the effects of radiation with different LET values on DNA DSB repair and radiosensitivity. Embryonic fibroblasts bearing repair gene (NHEJ-related Lig4 and/or HR-related Rad54) knockouts (KO) were used and their responses were compared to wild-type cells. The cells were exposed to X rays, spread-out Bragg peak (SOBP) carbon ion beams as well as with carbon, iron, neon and argon ions. Cell survival was measured with colony-forming assays. The sensitization enhancement ratio (SER) values were calculated using the 10% survival dose of wild-type cells and repair-deficient cells. Cellular radiosensitivity was listed in descending order: double-KO cells > Lig4-KO cells > Rad54-KO cells > wild-type cells. Although Rad54-KO cells had an almost constant SER value, Lig4-KO cells showed a high-SER value when compared to Rad54-KO cells, even with increasing LET values. These results suggest that with carbon-ion therapy, targeting NHEJ repair yields higher radiosensitivity than targeting homologous recombination repair.
Collapse
Affiliation(s)
- Akihisa Takahashi
- a Advanced Scientific Research Leaders Development Unit, Gunma University, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Autsavapromporn N, Plante I, Liu C, Konishi T, Usami N, Funayama T, Azzam EI, Murakami T, Suzuki M. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: The relevance to cancer risk. Int J Radiat Biol 2014; 91:62-70. [DOI: 10.3109/09553002.2014.950715] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
19
|
Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima TM, Imamoto N, Ogiwara K, Yamazaki Y. A novel facility for 3D micro-irradiation of living cells in a controlled environment by MeV ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:014302. [PMID: 24517788 DOI: 10.1063/1.4859499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We present a novel facility for micro-irradiation of living targets with ions from a 1.7 MV tandem accelerator. We show results using 1 MeV protons and 2 MeV He(2+). In contrast to common micro-irradiation facilities, which use electromagnetic or electrostatic focusing and specially designed vacuum windows, we employ a tapered glass capillary with a thin end window, made from polystyrene with a thickness of 1-2 μm, for ion focusing and extraction. The capillary is connected to a beamline tilted vertically by 45°, which allows for easy immersion of the extracted ions into liquid environment within a standard cell culture dish. An inverted microscope is used for simultaneously observing the samples as well as the capillary tip, while a stage-top incubator provides an appropriate environment for the samples. Furthermore, our setup allows to target volumes in cells within a μm(3) resolution, while monitoring the target in real time during and after irradiation.
Collapse
Affiliation(s)
- V Mäckel
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - W Meissl
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T Ikeda
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - M Clever
- Cellular Dynamics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - E Meissl
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T Kobayashi
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - T M Kojima
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - N Imamoto
- Cellular Dynamics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - K Ogiwara
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| | - Y Yamazaki
- Atomic Physics Laboratory, RIKEN, 351-0198 Wako-shi, Saitama, Japan
| |
Collapse
|
20
|
Autsavapromporn N, Suzuki M, Funayama T, Usami N, Plante I, Yokota Y, Mutou Y, Ikeda H, Kobayashi K, Kobayashi Y, Uchihori Y, Hei TK, Azzam EI, Murakami T. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality. Radiat Res 2013; 180:367-75. [PMID: 23987132 PMCID: PMC4058832 DOI: 10.1667/rr3111.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding the mechanisms underlying the bystander effects of low doses/low fluences of low- or high-linear energy transfer (LET) radiation is relevant to radiotherapy and radiation protection. Here, we investigated the role of gap-junction intercellular communication (GJIC) in the propagation of stressful effects in confluent normal human fibroblast cultures wherein only 0.036-0.144% of cells in the population were traversed by primary radiation tracks. Confluent cells were exposed to graded doses from monochromatic 5.35 keV X ray (LET ~6 keV/μm), 18.3 MeV/u carbon ion (LET ~103 keV/μm), 13 MeV/u neon ion (LET ~380 keV/μm) or 11.5 MeV/u argon ion (LET ~1,260 keV/μm) microbeams in the presence or absence of 18-α-glycyrrhetinic acid (AGA), an inhibitor of GJIC. After 4 h incubation at 37°C, the cells were subcultured and assayed for micronucleus (MN) formation. Micronuclei were induced in a greater fraction of cells than expected based on the fraction of cells targeted by primary radiation, and the effect occurred in a dose-dependent manner with any of the radiation sources. Interestingly, MN formation for the heavy-ion microbeam irradiation in the absence of AGA was higher than in its presence at high mean absorbed doses. In contrast, there were no significant differences in cell cultures exposed to X-ray microbeam irradiation in presence or absence of AGA. This showed that the inhibition of GJIC depressed the enhancement of MN formation in bystander cells from cultures exposed to high-LET radiation but not low-LET radiation. Bystander cells recipient of growth medium harvested from 5.35 keV X-irradiated cultures experienced stress manifested in the form of excess micronucleus formation. Together, the results support the involvement of both junctional communication and secreted factor(s) in the propagation of radiation-induced stress to bystander cells. They highlight the important role of radiation quality and dose in the observed effects.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Masao Suzuki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Tomoo Funayama
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Noriko Usami
- Photon Factory, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Ianik Plante
- University Space Research Association, NASA Johnson Space Center, Houston, Texas 77058
| | - Yuichiro Yokota
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Yasuko Mutou
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Hiroko Ikeda
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Katsumi Kobayashi
- Photon Factory, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
| | - Yasuhiko Kobayashi
- Microbeam Radiation Biology Group, Medical and Biotechnological Application Division, Quantum Beam Sciences Directorate, Japan Atomic Energy Agency, Takasaki, 370-1292, Japan
| | - Yukio Uchihori
- Research, Development and Support Center, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Tom K. Hei
- Center of Radiological Research, Columbia University Medical Center, New York, New York 10032
| | - Edouard I. Azzam
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, New Jersey 07103
| | - Takeshi Murakami
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| |
Collapse
|
21
|
Mutou-Yoshihara Y, Funayama T, Yokota Y, Kobayashi Y. Involvement of bystander effect in suppression of the cytokine production induced by heavy-ion broad beams. Int J Radiat Biol 2011; 88:258-66. [PMID: 22040060 DOI: 10.3109/09553002.2012.636138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Immune cells accumulate in and around cancers and cooperate with each other using specific cytokines to attack the cancer cells. The heavy-ion beams for cancer therapy may stimulate immune cells and affect on the immune system. However, it is still poorly understood how the immune cells are stimulated by ion-beams. Here, we irradiated immune cells using heavy-ion beams and analyzed changes in production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) that are important cytokine for the cancer treatment. MATERIALS AND METHODS The human THP-1 monocytes were differentiated into macrophages and then irradiated using carbon-ion broad-beams (108 keV μm(-1)). To examine the bystander response after heavy-ion irradiation, a very small fraction (approx. 0.45%) of the cell population was irradiated using heavy-ion microbeams. After irradiation, we examined the cytokine productions. RESULTS When cells were irradiated with 5 Gy, cytokine levels were reduced after both microbeam irradiation and broad-beam irradiation. TNF-α production of macrophages with the nitric oxide (NO) inhibitor-treatment increased after carbon-ion broad-beam. NO was involved in the radiation-induced suppression of TNF-α production. CONCLUSIONS The suppression of cytokine production arose after irradiation with heavy-ions, and may also be induced in the surrounding non-irradiated cells via the bystander effect.
Collapse
Affiliation(s)
- Yasuko Mutou-Yoshihara
- Microbeam Radiation Biology Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | | | | | | |
Collapse
|
22
|
Hino M, Hamada N, Tajika Y, Funayama T, Morimura Y, Sakashita T, Yokota Y, Fukamoto K, Mutou Y, Kobayashi Y, Yorifuji H. Heavy ion irradiation induces autophagy in irradiated C2C12 myoblasts and their bystander cells. JOURNAL OF ELECTRON MICROSCOPY 2010; 59:495-501. [PMID: 20685830 DOI: 10.1093/jmicro/dfq059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Autophagy is one of the major processes involved in the degradation of intracellular materials. Here, we examined the potential impact of heavy ion irradiation on the induction of autophagy in irradiated C2C12 mouse myoblasts and their non-targeted bystander cells. In irradiated cells, ultrastructural analysis revealed the accumulation of autophagic structures at various stages of autophagy (i.e. phagophores, autophagosomes and autolysosomes) within 20 min after irradiation. Multivesicular bodies (MVBs) and autolysosomes containing MVBs (amphisomes) were also observed. Heavy ion irradiation increased the staining of microtubule-associated protein 1 light chain 3 and LysoTracker Red (LTR). Such enhanced staining was suppressed by an autophagy inhibitor 3-methyladenine. In addition to irradiated cells, bystander cells were also positive with LTR staining. Altogether, these results suggest that heavy ion irradiation induces autophagy not only in irradiated myoblasts but also in their bystander cells.
Collapse
Affiliation(s)
- Mizuki Hino
- Department of Anatomy, Division of Bioregulatory Medicine, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nishikino M, Sato K, Hasegawa N, Ishino M, Ohshima S, Okano Y, Kawachi T, Numasaki H, Teshima T, Nishimura H. Note: Application of laser produced plasma K alpha x-ray probe in radiation biology. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:026107. [PMID: 20192524 DOI: 10.1063/1.3302827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A dedicated radiation biology x-ray generation and exposure system has been developed. 8.0 keV in energy x-ray pulses generated with a femtosecond-laser pulse was used to irradiate sample cells through a custom-made culture dish with a silicon nitride membrane. The x-ray irradiation resulted in DNA double-strand breaks in the nucleus of a culture cell that were similar to those obtained with a conventional x-ray source, thus demonstrating the feasibility of radiobiological studies utilizing a single burst of x-rays focused on single cell specimens.
Collapse
Affiliation(s)
- Masaharu Nishikino
- Quantum Beam Science Directorate, Japan Atomic Energy Agency, Advanced Photon Research Center, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fournier C, Barberet P, Pouthier T, Ritter S, Fischer B, Voss KO, Funayama T, Hamada N, Kobayashi Y, Taucher-Scholz G. No evidence for DNA and early cytogenetic damage in bystander cells after heavy-ion microirradiation at two facilities. Radiat Res 2009; 171:530-40. [PMID: 19580488 DOI: 10.1667/rr1457.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The occurrence of bystander effects has challenged the evaluation of risk for heavy ions, mainly in the context of space exploration and the increasing application of carbon ions in radiotherapy. In the present study, we addressed whether heavy-ion-induced DNA and cytogenetic damage is detectable in bystander cells. The formation of gamma-H2AX foci, sister chromatid exchanges and micronuclei were used as markers of damage to DNA. Normal human fibroblasts were exposed to low fluences of carbon and uranium ions, and alternatively single cells were targeted with heavy ions using the GSI microbeam. We did not observe a significant increase in the bystander formation of gamma-H2AX foci, sister chromatid exchanges or micronuclei. In addition, we performed for the first time parallel experiments at two microbeam facilities (GSI, JAEA) using the same cell line, culture conditions and irradiation protocols. No significant enhancement of the micronucleus frequencies in bystander cells was detected after targeted carbon-ion irradiation, confirming the results. Details regarding the history, culture conditions or support of the cells might be affecting the detection of bystander effects. On the other hand, the potential X-ray- and heavy-ion-induced bystander effects investigated herein clearly do not exceed the experimental error and thus are either lacking or are less pronounced than the effects reported in the literature for similar end points after alpha-particle and X-ray exposure.
Collapse
Affiliation(s)
- C Fournier
- Department of Biophysics, Gesellschaft für Schwerionenforschung, 64291 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Furusawa T, Fukamoto K, Sakashita T, Suzuki E, Kakizaki T, Hamada N, Funayama T, Suzuki H, Ishioka N, Wada S, Kobayashi Y, Nagaoka S. Targeted heavy-ion microbeam irradiation of the embryo but not yolk in the diapause-terminated egg of the silkworm, bombyx mori, induces the somatic mutation. JOURNAL OF RADIATION RESEARCH 2009; 50:371-375. [PMID: 19542691 DOI: 10.1269/jrr.09021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Using heavy-ion microbeam, we report target irradiation of selected compartments within the diapause-terminated egg and its mutational consequences in the silkworm, Bombyx mori. On one hand, carbon-ion exposure of embryo to 0.5-6 Gy increased the somatic mutation frequency, suggesting targeted radiation effects. On the other, such increases were not observed when yolk was targeted, suggesting a lack of nontargeted bystander effect.
Collapse
Affiliation(s)
- Toshiharu Furusawa
- Department of Applied Biology, Faculty of Textile Science, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van Oven C, Krawczyk PM, Stap J, Melo AM, Piazzetta MHO, Gobbi AL, van Veen HA, Verhoeven J, Aten JA. An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:721-8. [PMID: 19495740 PMCID: PMC2701496 DOI: 10.1007/s00249-009-0472-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/20/2009] [Accepted: 04/29/2009] [Indexed: 12/27/2022]
Abstract
Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage.
Collapse
Affiliation(s)
- Carel van Oven
- Department of Cell Biology and Histology, Center for Microscopical Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Harada K, Nonaka T, Hamada N, Sakurai H, Hasegawa M, Funayama T, Kakizaki T, Kobayashi Y, Nakano T. Heavy-ion-induced bystander killing of human lung cancer cells: role of gap junctional intercellular communication. Cancer Sci 2009; 100:684-8. [PMID: 19469013 PMCID: PMC11159273 DOI: 10.1111/j.1349-7006.2009.01093.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/28/2008] [Accepted: 12/18/2008] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to clarify the mechanisms of cell death induced by heavy-ion irradiation focusing on the bystander effect in human lung cancer A549 cells. In microbeam irradiation, each of 1, 5, and 25 cells under confluent cell conditions was irradiated with 1, 5, or 10 particles of carbon ions (220 MeV), and then the surviving fraction of the population was measured by a clonogenic assay in order to investigate the bystander effect of heavy-ions. In this experiment, the limited number of cells (0.0001-0.002%, 5-25 cells) under confluent cell conditions irradiated with 5 or 10 carbon ions resulted in an exaggerated 8-14% increase in cell death by clonogenic assay. However, these overshooting responses were not observed under exponentially growing cell conditions. Furthermore, these responses were inhibited in cells treated with an inhibitor of gap junctional intercellular communication (GJIC), whereas they were markedly enhanced by the addition of a stimulator of GJIC. The present results suggest that bystander cell killing by heavy-ions was induced mainly by direct cell-to-cell communication, such as GJIC, which might play important roles in bystander responses.
Collapse
Affiliation(s)
- Kosaku Harada
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hino M, Hamada N, Tajika Y, Funayama T, Morimura Y, Sakashita T, Yokota Y, Fukamoto K, Kobayashi Y, Yorifuji H. Insufficient membrane fusion in dysferlin-deficient muscle fibers after heavy-ion irradiation. Cell Struct Funct 2009; 34:11-5. [PMID: 19218742 DOI: 10.1247/csf.08033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recently, SJL/J mice have been used as an animal model in studies of dysferlinopathy, a spectrum of muscle diseases caused by defects in dysferlin protein. In this study we irradiated muscle fibers isolated from skeletal muscle of SJL/J mice with heavy-ion microbeam, and the ultrastructural changes were observed by electron microscopy. The plasma membrane of heavy-ion beam irradiated areas showed irregular protrusions and invaginations. Disruption of sarcomeric structures and the enhancement of autophagy were also observed. In addition, many vesicles of varying size and shape were seen to be accumulated just beneath the plasma membrane. This finding further supports the recent hypothesis that dysferlin functions as a membrane fusion protein in the wound healing system of plasma membrane, and that the defect in dysferlin causes insufficient membrane fusion resulting in accumulation of vesicles.
Collapse
Affiliation(s)
- Mizuki Hino
- Department of Anatomy, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hamada N. The Bystander Response to Heavy-Ion Radiation: Intercellular Signaling Between Irradiated and Non-Irradiated Cells. ACTA ACUST UNITED AC 2009. [DOI: 10.2187/bss.23.195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Hamada N. Recent insights into the biological action of heavy-ion radiation. JOURNAL OF RADIATION RESEARCH 2009; 50:1-9. [PMID: 18838844 DOI: 10.1269/jrr.08070] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biological effectiveness varies with the linear energy transfer (LET) of ionizing radiation. During cancer therapy or long-term interplanetary manned explorations, humans are exposed to high-LET energetic heavy ions that inactivate cells more effectively than low-LET photons like X-rays and gamma-rays. Recent biological studies have illustrated that heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, p53 mutations and intratumor hypoxia, and possess antiangiogenic and antimetastatic potential. Compared with heavy ions alone, the combination with chemical agents (a Bcl-2 inhibitor HA14-1, an anticancer drug docetaxel, and a halogenated pyrimidine analogue 5-iodo-2'-deoxyuridine) or hyperthermia further enhances tumor cell killing. Beer, its certain constituents, or melatonin ameliorate heavy ion-induced damage to normal cells. In addition to effects in cells directly targeted with heavy ions, there is mounting evidence for nontargeted biological effects in cells that have not themselves been directly irradiated. The bystander effect of heavy ions manifests itself as the loss of clonogenic potential, a transient apoptotic response, delayed p53 phosphorylation, alterations in gene expression profiles, and the elevated frequency of gene mutations, micronuclei and chromosome aberrations, which arise in nonirradiated cells having received signals from irradiated cells. Proposed mediating mechanisms involve gap junctional intercellular communication, reactive oxygen species and nitric oxide. This paper reviews briefly the current knowledge of the biological effects of heavy-ion irradiation with a focus on recent findings regarding its potential benefits for therapeutic use as well as on the bystander effect.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Department of Quantum Biology, Division of Bioregulatory Medicine, Gunma University Graduate School of Medicine, Gunma, Japan.
| |
Collapse
|
31
|
Miyazawa Y, Sakashita T, Funayama T, Hamada N, Negishi H, Kobayashi A, Kaneyasu T, Ooba A, Morohashi K, Kakizaki T, Wada S, Kobayashi Y, Fujii N, Takahashi H. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana. JOURNAL OF RADIATION RESEARCH 2008; 49:373-9. [PMID: 18413976 DOI: 10.1269/jrr.07131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Classical studies on root hydrotropism have hypothesized the importance of columella cells as well as the de novo gene expression, such as auxin-inducible gene, at the elongation zone in hydrotropism; however, there has been no confirmation that columella cells or auxin-mediated signaling in the elongation zone are necessary for hydrotropism. We examined the role of root cap and elongation zone cells in root hydrotropism using heavy-ion and laser microbeam. Heavy-ion microbeam irradiation of the elongation zone, but not that of the columella cells, significantly and temporarily suppressed the development of hydrotropic curvature. However, laser ablation confirmed that columella cells are indispensable for hydrotropism. Systemic heavy-ion broad-beam irradiation suppressed de novo expression of INDOLE ACETIC ACID 5 gene, but not MIZU-KUSSEI1 gene. Our results indicate that both the root cap and elongation zone have indispensable and functionally distinct roles in root hydrotropism, and that de novo gene expression might be required for hydrotropism in the elongation zone, but not in columella cells.
Collapse
Affiliation(s)
- Yutaka Miyazawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Expression profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells. Mutat Res 2008; 642:57-67. [PMID: 18538798 DOI: 10.1016/j.mrfmmm.2008.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 04/04/2008] [Accepted: 04/16/2008] [Indexed: 11/21/2022]
Abstract
Evidence has accumulated that ionizing radiation induces biological effects in non-irradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. Here we performed microarray analysis of irradiated and bystander fibroblasts in confluent cultures. To see the effects in bystander cells, each of 1, 5 and 25 sites was targeted with 10 particles of carbon ions (18.3 MeV/u, 103 keV/microm) using microbeams, where particles traversed 0.00026, 0.0013 and 0.0066% of cells, respectively. diated cells, cultures were exposed to 10% survival dose (D), 0.1D and 0.01D of corresponding broadbeams (108 keV/microm). Irrespective of the target numbers (1, 5 or 25 sites) and the time (2 or 6h postirradiation), similar expression changes were observed in bystander cells. Among 874 probes that showed more than 1.5-fold changes in bystander cells, 25% were upregulated and the remainder downregulated. These included genes related to cell communication (PIK3C2A, GNA13, FN1, ANXA1 and IL1RAP), stress response (RAD23B, ATF4 and EIF2AK4) and cell cycle (MYCN, RBBP4 and NEUROG1). Pathway analysis revealed serial bystander activation of G protein/PI-3 kinase pathways. Instead, genes related to cell cycle or death (CDKN1A, GADD45A, NOTCH1 and BCL2L1), and cell communication (IL1B, TCF7 and ID1) were upregulated in irradiated cells, but not in bystander cells. Our results indicate different expression profiles in irradiated and bystander cells, and imply that intercellular signaling between irradiated and bystander cells activate intracellular signaling, leading to the transcriptional stress response in bystander cells.
Collapse
|
33
|
Hamada N, Hara T, Omura-Minamisawa M, Ni M, Funayama T, Sakashita T, Sora S, Nakano T, Kobayashi Y. Heavy-Ion Microbeam Irradiation Induces Bystander Killing of Human Cells. ACTA ACUST UNITED AC 2008. [DOI: 10.2187/bss.22.46] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|