1
|
Luo Y, Melhem S, Feelisch M, Chatre L, Morton NM, Dolga AM, van Goor H. Thiosulphate sulfurtransferase: Biological roles and therapeutic potential. Redox Biol 2025; 82:103595. [PMID: 40107018 PMCID: PMC11957799 DOI: 10.1016/j.redox.2025.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Mitochondria are central to eukaryotic cell function, driving energy production, intermediary metabolism, and cellular homeostasis. Dysregulation of mitochondrial function often results in oxidative stress, a hallmark of numerous diseases, underscoring the critical need for maintaining mitochondrial integrity. Among mitochondrial enzymes, thiosulfate sulfurtransferase (TST) has emerged as a key regulator of sulfur metabolism, redox balance, and Fe-S protein maintenance. Beyond its well-known role in cyanide detoxification, TST facilitates hydrogen sulfide (H2S) metabolism by catalyzing the transfer of sulfur from persulfides (R-SSH) to thiosulfate (S2O32-), promoting H2S oxidation and preventing its toxic accumulation. Additionally, TST contributes to the thiol-dependent antioxidant system by regulating reactive sulfur species and sustaining mitochondrial functionality through its role in sulfide-driven bioenergetics. This review highlights the biochemical and therapeutic significance of TST in mitochondrial and cellular health, emphasizing its protective roles in diseases associated with oxidative stress and mitochondrial dysfunction. Dysregulation of TST has been implicated in diverse pathologies, including specific metabolic disorders, neurological diseases, cardiovascular conditions, kidney dysfunction, inflammatory bowel disease, and cancer. These associations underline TST's potential as a biomarker and therapeutic target. Therapeutic strategies to activate the TST pathway are explored, with a focus on sodium thiosulfate (STS), novel small molecule (Hit 2), and recombinant hTST protein. STS, an FDA-approved compound, has demonstrated antioxidant and anti-inflammatory effects across multiple preclinical models, mitigating oxidative damage and improving mitochondrial integrity. A slow-release oral formulation of STS is under development, offering promise for expanding its clinical applications. Small molecule activators like Hit 2 and hTST protein have shown efficacy in enhancing mitochondrial respiration and reducing oxidative stress, though both reagents need further in vitro and in vivo investigations. Despite promising advancements, TST-based therapies remain underexplored. Future research should focus on leveraging TST's interplay with pathways like NRF2 signaling, investigating its broader protective roles in cellular health, and developing targeted interventions. Enhancing TST activity represents an innovative therapeutic approach for addressing mitochondrial dysfunction, oxidative stress, and their associated pathologies, offering new hope for the treatment of diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Luo
- University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands; University Medical Center Groningen, Dept. of Pathology and Medical Biology, Groningen, the Netherlands
| | - Shaden Melhem
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie Univ, ISTCT, UMR6030, GIP Cyceron, Caen, F-14000, France
| | - Nicholas M Morton
- Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Amalia M Dolga
- University of Groningen, Dept. of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Dept. of Pathology and Medical Biology, Groningen, the Netherlands.
| |
Collapse
|
2
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
3
|
Fujikawa K, Sugihara T, Tanaka S, Tanaka I, Nakamura S, Nakamura-Murano M, Murano H, Komura JI. LOW DOSE-RATE RADIATION-SPECIFIC ALTERATIONS FOUND IN A GENOME-WIDE GENE EXPRESSION ANALYSIS OF THE MOUSE LIVER. RADIATION PROTECTION DOSIMETRY 2022; 198:1165-1169. [PMID: 36083764 DOI: 10.1093/rpd/ncac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Life span shortening and increased incidences of cancer and non-cancer diseases were observed in B6C3F1 mice irradiated with gamma-rays at a low dose-rate (LDR) of 20 mGy/d for 400 d. A genome-wide gene expression profiling of livers from mice irradiated at a LDR (20 mGy/d, 100-400 d) was performed. LDR radiation affected specific pathways such as those related to lipid metabolism, e.g. 'Cholesterol biosynthesis' and 'Adipogenesis' in females irradiated for 200 and 300 d at 20 mGy/d, with increased expression of genes encoding cholesterol biosynthesis enzymes (Cyp51, Sqle, Fdps) as age and radiation dose increased. No significant alterations in the expression of these genes were observed in male mice exposed similarly. However, the genes encoding adipogenesis regulators, Srebf1 and Pparg, increased with age and radiation dose in both sexes. Comparison between LDR-irradiated and medium dose-rate (400 mGy/d) male mice revealed quite different gene expression profiles. These results seem to be consistent with the increased incidence of fatty liver and obesity in female mice exposed to LDR radiation and suggest that metabolism is an important target of LDR radiation.
Collapse
Affiliation(s)
- Katsuyoshi Fujikawa
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Ignacia Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| | | | - Hayato Murano
- TESSCO, 330-2, Notsuke, Obuchi, Rokkasho, Aomori 039-3212, Japan
| | - Jun-Ichiro Komura
- Department of Radiobiology, Institute for Environmental Sciences (IES), 2-121, Hacchazawa, Takahoko, Rokkasho, Aomori 039-3213, Japan
| |
Collapse
|
4
|
Buonvino S, Arciero I, Melino S. Thiosulfate-Cyanide Sulfurtransferase a Mitochondrial Essential Enzyme: From Cell Metabolism to the Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23158452. [PMID: 35955583 PMCID: PMC9369223 DOI: 10.3390/ijms23158452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification, the transport of sulfur and selenium in biologically available forms, the restoration of iron–sulfur clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on important aspects of sulfur metabolism in diabetes. This review underlines the structural and functional characteristics of TST, describing the physiological role and biomedical and biotechnological applications of this essential enzyme.
Collapse
|
5
|
Rydz L, Wróbel M, Jurkowska H. Sulfur Administration in Fe-S Cluster Homeostasis. Antioxidants (Basel) 2021; 10:antiox10111738. [PMID: 34829609 PMCID: PMC8614886 DOI: 10.3390/antiox10111738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity.
Collapse
|
6
|
Tang T, Sun H, Li Y, Chen P, Liu F. MdRDH1, a HSP67B2-like rhodanese homologue plays a positive role in maintaining redox balance in Musca domestica. Mol Immunol 2019; 107:115-122. [DOI: 10.1016/j.molimm.2019.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/28/2023]
|
7
|
Braga-Tanaka I, Tanaka S, Kohda A, Takai D, Nakamura S, Ono T, Tanaka K, Komura JI. Experimental studies on the biological effects of chronic low dose-rate radiation exposure in mice: overview of the studies at the Institute for Environmental Sciences. Int J Radiat Biol 2018. [PMID: 29533133 DOI: 10.1080/09553002.2018.1451048] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarizes the results of experiments conducted in the Institute for Environmental Sciences for the past 21 years, focusing on the biological effects of long-term low dose-rate radiation exposure on mice. Mice were chronically exposed to gamma rays at dose-rates of 0.05, 1 or 20 mGy/day for 400 days to total doses of 20, 400 or 8000 mGy, respectively. The dose rate 0.05 mGy/day is comparable to the dose limit for radiation workers. The parameters examined were lifespan, neoplasm incidence, antineoplasm immunity, body weight, chromosome aberration(s), gene mutation(s), alterations in mRNA and protein levels and trans-generational effects. At 20 mGy/day, all biological endpoints were significantly altered except neoplasm incidence in the offspring of exposed males. Slight but statistically significant changes in lifespan, neoplasm incidences, chromosome abnormalities and gene expressions were observed at 1 mGy/day. Except for transient alterations in the mRNA levels of some genes and increased liver neoplasm incidence attributed to radiation exposure, the remaining biological endpoints were not influenced after exposure to 0.05 mGy/day. Results suggest that chronic low dose-rate exposure may induce small biological effects.
Collapse
Affiliation(s)
- Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Atsushi Kohda
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Daisaku Takai
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Shingo Nakamura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Tetsuya Ono
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Kimio Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho-mura Kamikita-gun , Aomori-ken , Japan
| |
Collapse
|
8
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|
9
|
Tang T, Li X, Liu X, Wang Y, Ji C, Wang Y, Wang X, Xie S, Liu F, Wang J. A single-domain rhodanese homologue MnRDH1 helps to maintain redox balance in Macrobrachium nipponense. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:160-168. [PMID: 28987482 DOI: 10.1016/j.dci.2017.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/29/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Rhodaneses are known to catalyze in vitro the transfer of a sulfane sulfur atom from thiosulfate to cyanide with concomitant formation of thiocyanate, however, their biological functions remain speculative despite the main role is considered as detoxifying cyanide especially in animal livers. In this study, we characterized a single-domain rhodanese homologue, MnRDH1, from Macrobrachium nipponense. We found MnRDH1 with the highest expression in hemocytes. Upon Aeromonas hydrophila challenge, expression of MnRDH1 was up-regulated in various tissues, including hepatopancreas, gill, intestine and hemocytes. RNAi knockdown of MnRDH1 led to rapid increases of malondialdehyde content, which reveals that MnRDH1 deficiency causes oxidative stress. The expression of MnRDH1 in hepatopancreas was significantly increased in response to the doxorubicin-induced oxidative stress, indicating the gene is oxidative stress inducible. We transformed E. coli with MnRDH1 and the mutant MnRDH1C75A, and found significant rhodanese activity of the recombinant protein of MnRDH1 in vitro, but detected no enzyme activity of the mutant MnRDH1C75A. When under the oxidative insult by H2O2, the MnRDH1 transformed E. coli had significantly enhanced survival rates compared to those bacteria transformed with MnRDH1C75A. In conclusion, our study demonstrates that rhodanese in M. nipponense confers oxidative stress tolerance, and thus renders an evidence for the notion that rhodanese family genes act a critical role in antioxidant defenses.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiang Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xin Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yili Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Congcong Ji
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yu Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Xiaochun Wang
- Department of Surgical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Song Xie
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China.
| | - Jianhui Wang
- Department of Pathology, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
10
|
Nakajima T, Wang B, Ono T, Uehara Y, Nakamura S, Ichinohe K, Braga-Tanaka I, Tanaka S, Tanaka K, Nenoi M. Differences in sustained alterations in protein expression between livers of mice exposed to high-dose-rate and low-dose-rate radiation. JOURNAL OF RADIATION RESEARCH 2017; 58:421-429. [PMID: 28201773 PMCID: PMC5570048 DOI: 10.1093/jrr/rrw133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 05/13/2023]
Abstract
Molecular mechanisms of radiation dose-rate effects are not well understood. Among many possibilities, long-lasting sustained alterations in protein levels would provide critical information. To evaluate sustained effects after acute and chronic radiation exposure, we analyzed alterations in protein expression in the livers of mice. Acute exposure consisted of a lethal dose of 8 Gy and a sublethal dose of 4 Gy, with analysis conducted 6 days and 3 months after irradiation, respectively. Chronic irradiation consisted of a total dose of 8 Gy delivered over 400 days (20 mGy/day). Analyses following chronic irradiation were done immediately and at 3 months after the end of the exposure. Based on antibody arrays of protein expression following both acute lethal and sublethal dose exposures, common alterations in the expression of two proteins were detected. In the sublethal dose exposure, the expression of additional proteins was altered 3 months after irradiation. Immunohistochemical analysis showed that the increase in one of the two commonly altered proteins, MyD88, was observed around blood vessels in the liver. The alterations in protein expression after chronic radiation exposure were different from those caused by acute radiation exposures. Alterations in the expression of proteins related to inflammation and apoptosis, such as caspase 12, were observed even at 3 months after the end of the chronic radiation exposure. The alterations in protein expression depended on the dose, the dose rate, and the passage of time after irradiation. These changes could be involved in long-term effects of radiation in the liver.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
- Corresponding author. National Institute of Radiological Sciences, National Institutes of Quantum and Radiolgical Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan. Tel: +81-43-206-3086; Fax: +81-43-255-6497;
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| | - Tetsuya Ono
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Yoshihiko Uehara
- Department of Cell Biology, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Ignacia Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes of Quantum and Radiological Science and Technology, 9-1, Anagawa-4-chome, Inage-ku, Chiba-shi 263-8555, Japan
| |
Collapse
|
11
|
Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:379-401. [PMID: 26343037 DOI: 10.1007/s00411-015-0613-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 05/21/2023]
Abstract
The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy E Shore
- Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima City, 732-0815, Japan
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russian Federation, 456780
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Oberschleissheim, Germany
| | - Ohtsura Niwa
- Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7 Ienomae, Rokkasho, Aomori-ken, 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Tokyo, 201-8511, Japan
| | - Nobuhiko Ban
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| | - Christopher H Clement
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot, OX11 ORQ, UK
| | - Hideki Toma
- JAPAN NUS Co., Ltd. (JANUS), 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Nobuyuki Hamada
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada.
| |
Collapse
|
12
|
Nakajima T. Roles of Sulfur Metabolism and Rhodanese in Detoxification and Anti-Oxidative Stress Functions in the Liver: Responses to Radiation Exposure. Med Sci Monit 2015; 21:1721-5. [PMID: 26071878 PMCID: PMC4471854 DOI: 10.12659/msm.893234] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Organisms must confront various environmental stresses. The liver is central to protecting against such stresses in mammals, and it has many detoxification and anti-oxidative stress functions. Radiation is a source of oxidative stress and is known to affect the liver and induce anti-oxidative responses. The detoxification enzyme rhodanese, which is also called thiosulfate sulfurtransferase (TST), has been demonstrated to be induced in the liver in response to radiation. Cyanide detoxification is a function of the liver, and rhodanese is a key enzyme involved in sulfur metabolism in that detoxification. Though the anti-oxidative stress system in which sulfur molecules such as thiol compounds are involved has attracted attention as a defense against radiation, detoxification enzymes may have other roles in this defense. Understanding how these functions are affected by alterations of sulfur metabolism (including thiol compounds) after irradiation would help uncover their roles in defense against cancer and other deleterious health effects, as well as environmental stress responses. This article reviews the roles of sulfur-related metabolism in oxidative stress regulation and detoxification for recovery from liver damage after radiation exposure, with particular attention to recent findings of sulfur-related enzymes such as rhodanese, which is unique in sulfur metabolism.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba-shi, Japan
| |
Collapse
|
13
|
Lee EK, Kim JA, Kim JS, Park SJ, Heo K, Yang KM, Son TG. Activation of de novo GSH synthesis pathway in mouse spleen after long term low-dose γ-ray irradiation. Free Radic Res 2012; 47:89-94. [PMID: 23136969 DOI: 10.3109/10715762.2012.747678] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glutathione (GSH) is an important cellular antioxidant and has a critical role in maintaining the balance of cellular redox. In this study, we investigated the GSH biosynthesis genes involved in the elevation of endogenous GSH levels using an irradiation system with an irradiation dose rate of 1.78 mGy/h, which was about 40,000 times less than the dose rates used in other studies. The results showed that GSH levels were significantly increased in the low-dose (0.02 and 0.2 Gy) irradiated group compared to those in the non-irradiated group, but enzymatic antioxidants such as superoxide dismutase and catalase were not induced at any doses tested. The elevation in GSH was accompanied by elevated expression of glutamate-cysteine ligase modifier subunit, but no changes were observed in the expression of glutamate-cysteine ligase catalytic subunit and thioredoxin in de novo GSH synthesis. In the case of genes involved in the GSH regeneration cycle, the expression of glutathione reductase was not changed after irradiation, whereas glutathione peroxidase was only increased in the 0.2 Gy irradiated group. Collectively, our results suggest that the de novo pathway, rather than the regeneration cycle, may be mainly switched on in response to stimulation with long-term low-dose radiation in the spleen.
Collapse
Affiliation(s)
- E K Lee
- Research Center, Dongnam Institute of Radiological and Medical Science , 40 Jwadong-gil, Jangan-eup, Gijang-gun, Busan, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Pluder F, Barjaktarovic Z, Azimzadeh O, Mörtl S, Krämer A, Steininger S, Sarioglu H, Leszczynski D, Nylund R, Hakanen A, Sriharshan A, Atkinson MJ, Tapio S. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hy926. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:155-166. [PMID: 21104263 DOI: 10.1007/s00411-010-0342-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
High doses of ionising radiation damage the heart by an as yet unknown mechanism. A concern for radiological protection is the recent epidemiological data indicating that doses as low as 100-500 mGy may induce cardiac damage. The aim of this study was to identify potential molecular targets and/or mechanisms involved in the pathogenesis of low-dose radiation-induced cardiovascular disease. The vascular endothelium plays a pivotal role in the regulation of cardiac function and is therefore a potential target tissue. We report here that low-dose radiation induced rapid and time-dependent changes in the cytoplasmic proteome of the human endothelial cell line EA.hy926. The proteomes were investigated at 4 and 24 h after irradiation at two different dose rates (Co-60 gamma ray total dose 200 mGy; 20 mGy/min and 190 mGy/min) using 2D-DIGE technology. Differentially expressed proteins were identified, after in-gel trypsin digestion, by MALDI-TOF/TOF tandem mass spectrometry, and peptide mass fingerprint analyses. We identified 15 significantly differentially expressed proteins, of which 10 were up-regulated and 5 down-regulated, with more than ±1.5-fold difference compared with unexposed cells. Pathways influenced by the low-dose exposures included the Ran and RhoA pathways, fatty acid metabolism and stress response.
Collapse
Affiliation(s)
- Franka Pluder
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sugihara T, Murano H, Nakamura M, Ichinohe K, Tanaka K. p53-Mediated Gene Activation in Mice at High Doses of Chronic Low-Dose-Rate γ Radiation. Radiat Res 2010; 175:328-35. [DOI: 10.1667/rr2446.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Hayato Murano
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Masako Nakamura
- Tohoku Environmental Sciences Services Corporation, 330-2 Noduki, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa Takahoko, Rokkasho, Kamikita, Aomori 039-3213, Japan
| |
Collapse
|
16
|
Uehara Y, Ito Y, Taki K, Nenoi M, Ichinohe K, Nakamura S, Tanaka S, Oghiso Y, Tanaka K, Matsumoto T, Paunesku T, Woloschak GE, Ono T. Gene Expression Profiles in Mouse Liver after Long-Term Low-Dose-Rate Irradiation with Gamma Rays. Radiat Res 2010; 174:611-7. [DOI: 10.1667/rr2195.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshihiko Uehara
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yasuko Ito
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Keiko Taki
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Kazuaki Ichinohe
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Shingo Nakamura
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Yoichi Oghiso
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Kimio Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Tsuneya Matsumoto
- Department of Radiobiology, Institute for Environmental Sciences, Aomori 039-3212, Japan
| | - Tatjana Paunesku
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Gayle E. Woloschak
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Tetsuya Ono
- Department of Cell Biology, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
17
|
Taki K, Wang B, Nakajima T, Wu J, Ono T, Uehara Y, Matsumoto T, Oghiso Y, Tanaka K, Ichinohe K, Nakamura S, Tanaka S, Magae J, Kakimoto A, Nenoi M. Microarray analysis of differentially expressed genes in the kidneys and testes of mice after long-term irradiation with low-dose-rate gamma-rays. JOURNAL OF RADIATION RESEARCH 2009; 50:241-252. [PMID: 19398854 DOI: 10.1269/jrr.09011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Measuring global gene expression using cDNA or oligonucleotide microarrays is an effective approach to understanding the complex mechanisms of the effects of radiation. However, few studies have been carried out that investigate gene expression in vivo after prolonged exposure to low-dose-rate radiation. In this study, C57BL/6J mice were continuously irradiated with gamma-rays for 485 days at dose-rates of 0.032-13 microGy/min. Gene expression profiles in the kidney and testis from irradiated and unirradiated mice were analyzed, and differentially expressed genes were identified. A combination of pathway analysis and hierarchical clustering of differentially expressed genes revealed that expression of genes involved in mitochondrial oxidative phosphorylation was elevated in the kidney after irradiation at the dose-rates of 0.65 microGy/min and 13 microGy/min. Expression of cell cycle-associated genes was not profoundly modulated in the kidney, in contrast to the response to acute irradiation, suggesting a threshold in the dose-rate for modulation of the expression of cell cycle-related genes in vivo following exposure to radiation. We demonstrated that changes to the gene expression profile in the testis were largely different from those in the kidney. The Gene Ontology categories "DNA metabolism", "response to DNA damage" and "DNA replication" overlapped significantly with the clusters of genes whose expression decreased with an increase in the dose-rate to the testis. These observations provide a fundamental insight into the organ-specific responses to low-dose-rate radiation.
Collapse
Affiliation(s)
- Keiko Taki
- Radiation Effect Mechanisms Research Group, National Institute of Radiological Sciences, 9-1 Anagawa-4-chome, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ono T, Grodzinsky D. Scientific Risk Estimation on Health Effects of Low Dose and Low Dose-Rate Radiation - An Overview. DATA SCIENCE JOURNAL 2009. [DOI: 10.2481/dsj.br-01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|