1
|
Gaggl A, Bottini GB, Sagl B, Rasse M. Functional reconstruction of the masseter muscle by microvascular free gracilis muscle transfer: technique and outcome. Int J Oral Maxillofac Surg 2023; 52:1235-1239. [PMID: 37394392 DOI: 10.1016/j.ijom.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Microvascular reconstruction of the cheek is most often performed using fasciocutaneous flaps and without functional reconstruction of the masseter muscle. This article reports a technique of masseter muscle resection, dissection of the masseteric nerve, and masseter muscle reconstruction with a functional gracilis muscle flap. The technique was applied in a 38-year-old man with recurrent intramuscular lipoma of the right masseter muscle. The flap was highly stable in form and showed good function. Bite force, electromyography results, and the radiological appearance of the gracilis muscle were similar to those of the contralateral masseter muscle at 12 months after surgery. In conclusion, full rehabilitation of masseter muscle function and good facial aesthetics were achieved by functional gracilis muscle reconstruction of the masseter muscle in a case of total resection.
Collapse
Affiliation(s)
- A Gaggl
- Department for Oral and Maxillofacial Surgery, Paracelsus Medical University of Salzburg, Salzburg, Austria.
| | - G B Bottini
- Department for Oral and Maxillofacial Surgery, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - B Sagl
- University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - M Rasse
- Department for Oral and Maxillofacial Surgery, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Zheng SY, Wan XX, Kambey PA, Luo Y, Hu XM, Liu YF, Shan JQ, Chen YW, Xiong K. Therapeutic role of growth factors in treating diabetic wound. World J Diabetes 2023; 14:364-395. [PMID: 37122434 PMCID: PMC10130901 DOI: 10.4239/wjd.v14.i4.364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 03/21/2023] [Indexed: 04/12/2023] Open
Abstract
Wounds in diabetic patients, especially diabetic foot ulcers, are more difficult to heal compared with normal wounds and can easily deteriorate, leading to amputation. Common treatments cannot heal diabetic wounds or control their many complications. Growth factors are found to play important roles in regulating complex diabetic wound healing. Different growth factors such as transforming growth factor beta 1, insulin-like growth factor, and vascular endothelial growth factor play different roles in diabetic wound healing. This implies that a therapeutic modality modulating different growth factors to suit wound healing can significantly improve the treatment of diabetic wounds. Further, some current treatments have been shown to promote the healing of diabetic wounds by modulating specific growth factors. The purpose of this study was to discuss the role played by each growth factor in therapeutic approaches so as to stimulate further therapeutic thinking.
Collapse
Affiliation(s)
- Shen-Yuan Zheng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Xin-Xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Yan Luo
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
| | - Yi-Fan Liu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Jia-Qi Shan
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Yu-Wei Chen
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, Hunan Province, China
- Key Laboratory of Emergency and Trauma, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan Province, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Correlation of chemokines and growth factors with radiation-induced liver injury after interstitial high dose rate (HDR) brachytherapy of liver metastases. J Cancer Res Clin Oncol 2022; 148:2815-2826. [PMID: 35596772 PMCID: PMC9470622 DOI: 10.1007/s00432-022-04041-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Background Locoregional therapies, as imaging-guided tumor-directed procedures, are emerging treatment strategies in the management of primary and secondary liver malignancies such as e.g. colorectal cancer liver metastases. As one of those, irradiation-based interstitial high dose rate brachytherapy (iBT) of liver metastases bears a risk of developing focal radiation-induced liver injury (fRILI). Since little is known about biological factors involved in hepatic dysfunction after irradiation, the aim of this study was to identify factors, that may play a role in the underlying mechanism of fRILI, and that potentially may serve as biomarkers for post-therapeutic fRILI to improve specific management and treatment of patients. Methods Twenty-two patients with hepatic malignancies (tumor patients, TP) underwent iBT with total ablative doses of radiation to the target volume ranging from e.g. 15 to 25 Gy. Hepatobiliary magnetic resonance imaging (MRI) was performed 6 weeks after iBT to quanitify fRILI. Blood samples were taken before (pre) and 6 weeks after (post) iBT from TP, and from ten healthy volunteers (HV controls) for the analyses of humoral mediators: monocyte chemoattractant protein-1 (MCP-1), chemokine (C-X3-C motif) ligand 1 (CX3CL1), vascular endothelial growth factor (VEGF) and beta-nerve growth factor (beta-NGF) using the Multi-Analyte Flow Assay via flow cytometry. Correlation analyses between the humoral mediators (pre and post iBT) with the tumor volume and fRILI were performed. Results While MCP-1 and CX3CL1 tended to decrease in TP vs. HV, VEGF was significantly decreased in TP vs. HV pre and post iBT (p < 0.05). Beta-NGF levels were significantly increased in TP vs. HV pre and post iBT (p < 0.05). Baseline circulating levels of MCP-1, VEGF and beta-NGF have shown significant positive correlations with the hepatic tumor volume (p < 0.05). Circulating levels of humoral mediators before treatment did not correlate with fRILI, while CX3CL1 and VEGF after iBT have shown significant positive correlations with fRILI (p < 0.05). Conclusion Tumor volume and threshold dose of irradiation damage correlated positively with MCP-1 and VEGF as well as NGF and CX3CL, respectively. Thus, investigation of biological mediators in blood samples from tumor patients may provide an appropriate tool to predict fRILI after interstitial HDR brachytherapy of liver metastases.
Collapse
|
4
|
Liu Z, Wu H, Huang S. Role of NGF and its receptors in wound healing (Review). Exp Ther Med 2021; 21:599. [PMID: 33884037 PMCID: PMC8056114 DOI: 10.3892/etm.2021.10031] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/08/2021] [Indexed: 12/17/2022] Open
Abstract
Wound healing is an important and complicated process that includes four highly integrated and overlapping phases, haemostasis, inflammation, proliferation and tissue remodelling. Nerve growth factor (NGF) was the first member of a family of neurotrophic factors to be discovered, and is an essential neurotrophic factor for the development and maintenance of the central and peripheral nervous systems. Several studies have proposed that NGF and its receptors, tropomyosin-related kinase receptor 1 and NGF receptor, are involved in the wound healing process, and are important components of the healing of several wounds both in vivo and in vitro. Topical application of NGF significantly promotes the healing of different types of wounds, including diabetic foot ulcers, pressure ulcers and corneal wounds. The present review summarizes the status of NGF and its receptors in current literature, and discusses data obtained in the last few years on the healing action of NGF in cutaneous, corneal and oral wounds.
Collapse
Affiliation(s)
- Zhenxing Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Haiwei Wu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Shengyun Huang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
5
|
Chen X, Zhai D, Wang B, Hao S, Song J, Peng Z. Hair keratin promotes wound healing in rats with combined radiation-wound injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:28. [PMID: 32125534 DOI: 10.1007/s10856-020-06365-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Keratins derived from human hair have been suggested to be particularly effective in general surgical wound healing. However, the healing of a combined radiation-wound injury is a multifaceted regenerative process. Here, hydrogels fabricated with human hair keratins were used to test the wound healing effects on rats suffering from combined radiation-wound injuries. Briefly, the keratin extracts were verified by dodecyl sulfate polyacrylamide gel electrophoresis analysis and amino acid analysis, and the keratin hydrogels were then characterized by morphological observation, Fourier transform infrared spectroscopy analysis and rheology analyses. The results of the cell viability assay indicated that the keratin hydrogels could enhance cell growth after radiation exposure. Furthermore, keratin hydrogels could accelerate wound repair and improve the survival rate in vivo. The results demonstrate that keratin hydrogels possess a strong ability to accelerate the repair of a combined radiation-wound injury, which opens up new tissue regeneration applications for keratins.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China
| | - Dongliang Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China.
| | - Jia Song
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Zhiping Peng
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China.
| |
Collapse
|
6
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Sousa-Victor P, Jasper H, Neves J. Trophic Factors in Inflammation and Regeneration: The Role of MANF and CDNF. Front Physiol 2018; 9:1629. [PMID: 30515104 PMCID: PMC6255971 DOI: 10.3389/fphys.2018.01629] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Regeneration is an important process in multicellular organisms, responsible for homeostatic renewal and repair of different organs after injury. Immune cell activation is observed at early stages of the regenerative response and its regulation is essential for regenerative success. Thus, immune regulators play central roles in optimizing regenerative responses. Neurotrophic factors (NTFs) are secreted molecules, defined by their ability to support neuronal cell types. However, emerging evidence suggests that they can also play important functions in the regulation of immune cell activation and tissue repair. Here we discuss the literature supporting a role of NTFs in the regulation of inflammation and regeneration. We will focus, in particular, in the emerging roles of mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) in the regulation of immune cell function and in the central role that immune modulation plays in their biological activity in vivo. Finally, we will discuss the potential use of these factors to optimize regenerative success in vivo, both within and beyond the nervous system.
Collapse
Affiliation(s)
- Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States
| | - Heinrich Jasper
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States.,Immunology Discovery, Genentech, Inc., South San Francisco, CA, United States
| | - Joana Neves
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
8
|
Lee C, Shim S, Jang H, Myung H, Lee J, Bae CH, Myung JK, Kim MJ, Lee SB, Jang WS, Lee SJ, Kim HY, Lee SS, Park S. Human umbilical cord blood-derived mesenchymal stromal cells and small intestinal submucosa hydrogel composite promotes combined radiation-wound healing of mice. Cytotherapy 2017; 19:1048-1059. [PMID: 28751152 DOI: 10.1016/j.jcyt.2017.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/19/2017] [Accepted: 06/19/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are a promising agent for treating impaired wound healing, and their therapeutic potential may be enhanced by employing extracellular matrix scaffolds as cell culture scaffolds or transplant cell carriers. Here, we evaluated the effect of human umbilical cord blood-derived (hUCB)-MSCs and a porcine small intestinal submucosa (SIS)-derived extracellular matrix scaffold in a combined radiation-wound mouse model of impaired wound healing. METHODS hUCB-MSCs and SIS hydrogel composite was applied to the excisional wound of whole-body irradiated mice. Assessment of wound closing and histological evaluation were performed in vivo. We also cultured hUCB-MSCs on SIS gel and examined the angiogenic effect of conditioned medium on irradiated human umbilical vein endothelial cells (HUVECs) in vitro. RESULTS hUCB-MSCs and SIS hydrogel composite treatment enhanced wound healing and angiogenesis in the wound site of mice. Conditioned medium from hUCB-MSCs cultured on SIS hydrogel promoted the chemotaxis of irradiated HUVECs more than their proliferation. The secretion of angiogenic growth factors hepatocyte growth factor, vascular endothelial growth factor-A and angiopoietin-1 from hUCB-MSCs was significantly increased by SIS hydrogel, with HGF being the predominant angiogenic factor of irradiated HUVECs. CONCLUSIONS Our results suggest that the wound healing effect of hUCB-MSCs is enhanced by SIS hydrogel via a paracrine factor-mediated recruitment of vascular endothelial cells in a combined radiation-wound mouse model.
Collapse
Affiliation(s)
- Changsun Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sehwan Shim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyosun Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyunwook Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Janet Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chang-Hwan Bae
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jae Kyung Myung
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Min-Jung Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Seung Bum Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Won-Suk Jang
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sun-Joo Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hwi-Yool Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Sook Lee
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sunhoo Park
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea; Department of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
10
|
Sun W, Lin H, Chen B, Zhao W, Zhao Y, Xiao Z, Dai J. Collagen scaffolds loaded with collagen-binding NGF-beta accelerate ulcer healing. J Biomed Mater Res A 2010; 92:887-95. [PMID: 19283824 DOI: 10.1002/jbm.a.32445] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies have shown that exogenous nerve growth factor (NGF) accelerates ulcer healing, but the inefficient growth factor delivery system limits its clinical application. In this report, we found that the native human NGF-beta fused with a collagen-binding domain (CBD) could form a collagen-based NGF targeting delivery system, and the CBD-fused NGF-beta could bind to collagen membranes efficiently. Using the rabbit dermal ischemic ulcer model, we have found that this targeting delivery system maintains a higher concentration and stronger bioactivity of NGF-beta on the collagen membranes by promoting peripheral nerve growth. Furthermore, it enhances the rate of ulcer healing through accelerating the re-epithelialization of dermal ulcer wounds and the formation of capillary lumens within the newly formed tissue area. Thus, collagen membranes loaded with collagen-targeting human NGF-beta accelerate ulcer healing efficiently.
Collapse
Affiliation(s)
- Wenjie Sun
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med 2010; 16:137-43. [PMID: 20101281 DOI: 10.2119/molmed.2009.00154] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/15/2010] [Indexed: 02/02/2023] Open
Abstract
The threat of nuclear terrorism has led to growing worldwide concern about exposure to radiation. Acute radiation syndrome, or radiation sickness, develops after whole-body or a partial-body irradiation with a high dose of radiation. In the terrorist radiation exposure scenario, however, radiation victims likely suffer from additional injuries such as trauma, burns, wounds or sepsis. Thus, high-dose radiation injuries and appropriate therapeutic interventions must be studied. Despite advances in our understanding of the pathophysiology of radiation injury, very little information is available on the therapeutic approaches to radiation combined injury. In this review, we describe briefly the pathological consequences of ionizing radiation and provide an overview of the animal models of radiation combined injury. We highlight the combined radiation and sepsis model we recently established and suggest the use of ghrelin, a novel gastrointestinal hormone, as a potential therapy for radiation combined injury.
Collapse
Affiliation(s)
- Asha Jacob
- Laboratory of Surgical Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America and Department of Surgery, North Shore University Hospital and Long Island Jewish Medical Center, Great Neck, New York, United States of America
| | | | | | | |
Collapse
|
12
|
Xian CJ, Zhou XF. Treating skeletal pain: limitations of conventional anti-inflammatory drugs, and anti-neurotrophic factor as a possible alternative. ACTA ACUST UNITED AC 2009; 5:92-8. [DOI: 10.1038/ncprheum0982] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 11/05/2008] [Indexed: 11/09/2022]
|
13
|
Johansson A, Forsgren S, Stenberg B, Wilén J, Kalezic N, Sandström M. No effect of mobile phone-like RF exposure on patients with atopic dermatitis. Bioelectromagnetics 2008; 29:353-62. [DOI: 10.1002/bem.20402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Jurjus A, Atiyeh BS, Abdallah IM, Jurjus RA, Hayek SN, Jaoude MA, Gerges A, Tohme RA. Pharmacological modulation of wound healing in experimental burns. Burns 2007; 33:892-907. [PMID: 17521821 DOI: 10.1016/j.burns.2006.10.406] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 10/27/2006] [Indexed: 12/28/2022]
Abstract
Factors involved in wound healing and their interdependence are not yet fully understood; nevertheless, new prospects for therapy to favor speedy and optimal healing are emerging. Reports about wound healing modulation by local application of simple and natural agents abound even in the recent literature, however, most are anecdotal and lack solid scientific evidence. We describe the effect of silver sulfadiazine and moist exposed burn ointment (MEBO), a recently described burn ointment of herbal origin, on mast cells and several wound healing cytokines (bFGF, IL-1, TGF-beta, and NGF) in the rabbit experimental burn model. The results demonstrate that various inflammatory cells, growth factors and cytokines present in the wound bed may be modulated by application of local agents with drastic effects on their expression dynamics with characteristic temporal and spatial regulation and changes in the expression pattern. Such data are likely to be important for the development of novel strategies for wound healing since they shed some light on the potential formulations of temporally and combinatory optimized therapeutic regimens.
Collapse
Affiliation(s)
- Abdo Jurjus
- Human Morphology, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Neurotrophins are known to have growth, survival-promoting, and healing effects. The importance of neurotrophins in ulcerative colitis (UC) is, however, unclear. Recent studies in our group revealed that an occurrence of marked changes in neurotrophin expression patterns was related to a worsening of the disease process. There was thus an upregulation for the lamina propria cells but a downregulation in nerve structures concerning neurotrophin expressions in severe UC. The observations show that changes in the neurotrophin system are a part of the disease process in UC and are of interest as treatments interfering with neurotrophin effects in other situations have been found to have trophic and healing effects.
Collapse
Affiliation(s)
- Malin Johansson
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | |
Collapse
|
16
|
Abstract
Radiotherapy is an invaluable weapon when treating cancer. However, the deleterious effects of radiation, both immediate and long-term, may have a significant effect on local tissues. Problematic wound healing in radiation-damaged tissue constitutes a major problem that is frequently overlooked during the management of patients who require radiotherapy, or have had radiotherapy in the past. Poor wound healing may lead to chronic ulceration, pain, secondary infection and psychological distress and compromise the outcome of general or reconstructive surgery. We discuss the pathophysiology of poor wound healing following radiotherapy, specific problems for radiation-damaged tissue and potential treatments to improve wound healing of irradiated tissues.
Collapse
Affiliation(s)
- Emma-Louise Dormand
- Department of Plastic Surgery, Radcliffe Infirmary, Woodstock Road, Oxford, UK
| | | | | |
Collapse
|
17
|
Qu J, Cheng T, Shi C, Lin Y, Ran X. A study on the activity of fibroblast cells in connection with tissue recovery in the wounds of skin injury after whole-body irradiation. JOURNAL OF RADIATION RESEARCH 2004; 45:341-344. [PMID: 15304979 DOI: 10.1269/jrr.45.341] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 6 Gy of whole-body irradiation (WBI) with gamma rays results in an impairment of injured skin tissue recovery and renders a delay in the healing process. For an understanding of whether WBI has damaging effects on fibroblasts in wounds, fibroblasts in wounds combined with WBI and those of simple incision were isolated and cultivated, and abilities connected with tissue repair, including proliferation, attachment, adhesion, and apoptosis, were determined by direct cell count, immunohistochemical staining for proliferation cell nuclear antigen (PCNA), and TUNEL assay. The results showed that the abilities of proliferation and the attachment and adhesion of fibroblasts from wounds combined with WBI significantly decreased in comparison with those having simple incisions on the 3rd and 5th days of posttrauma, whereas the apoptotic ratio of fibroblasts from wounds combined with WBI significantly increased. These data suggest that WBI may exert damaging effects on fibroblasts in wounds, which might be one of the dominant reasons for the impaired healing of wounds combined with WBI.
Collapse
Affiliation(s)
- Jifu Qu
- Institute of Combined Injury of PLA, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, P.R. China
| | | | | | | | | |
Collapse
|
18
|
Shi CM, Cheng TM, Su YP, Mai Y, Qu JF, Ran XZ. Transplantation of dermal multipotent cells promotes the hematopoietic recovery in sublethally irradiated rats. JOURNAL OF RADIATION RESEARCH 2004; 45:19-24. [PMID: 15133285 DOI: 10.1269/jrr.45.19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our previous study indicated that dermal multipotent cells with the differentiation capacity to form cells with the phenotypic properties of osteocytes, adipocytes, chondrocytes, and neurons in specific inducing media could be isolated from the enzymatically dissociated dermal cells of newborn rats by their adherence to culture dish plastic. We have also observed that the systemic transplantation of dermal multipotent cells could not repopulate the hematopoietic system in lethally irradiated rats. In this paper, we found that a transplantation of plastic-adherent dermal multipotent cells into sublethally irradiated rats led to a significant increase of white blood cells in peripheral blood, nucleated cells, CFU-GM, and CFU-F colonies in bone marrow. FISH analysis, using a Y-chromosome specific probe, showed that dermal multipotent cells could engraft into bone marrow in recipients. Flow cytometry (FACS) analysis also showed that the proportion of CD2 and CD25 positive lymphocytes in peripheral blood did not change significantly in two weeks after transplantation. By these results, we infer that dermal multipotent cells may represent an alternative origin of mesenchymal stem cells to restore marrow microenvironment and promote the survival, engraftment, and proliferation of hematopoietic cells.
Collapse
Affiliation(s)
- Chun-Meng Shi
- Institute of Combine Injury, School of Preventive Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China.
| | | | | | | | | | | |
Collapse
|
19
|
Wilfong ER, Dey RD. Nerve growth factor and substance P regulation in nasal sensory neurons after toluene diisocyanate exposure. Am J Respir Cell Mol Biol 2003; 30:793-800. [PMID: 14672914 DOI: 10.1165/rcmb.2003-0303oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toluene diisocyanate (TDI) exposure produces rhinitis and nasal irritation, and increases the synthesis and release of substance P (SP) from airway sensory nerves. The mechanism leading to enhanced SP production following irritant inhalation remains unclear, but may involve actions of nerve growth factor (NGF). NGF binds trkA receptors located on sensory nerve terminals. Activation of trkA receptors initiates kinase-signaling cascades, which ultimately may increase SP. However, the effects of inhaled irritants on NGF release are not known. In this study, NGF levels in nasal lavages were examined following instillation of 10% TDI into both nasal cavities. NGF was significantly increased 2, 6, 12, and 24 h after TDI exposure compared with controls. The increase in NGF preceded the neuronal and mucosal increases in SP. Pretreatment with K252a, a nonselective tyrosine-kinase inhibitor, prevented the increase in SP-immunoreactivity in TG neurons and epithelial nerve fibers and the inflammatory response to TDI exposure. Because NGF binds to trkA tyrosine-kinase receptors, the NGF released during TDI exposure may mediate SP upregulation in airway sensory neurons, innervating the nasal cavity.
Collapse
Affiliation(s)
- Erin R Wilfong
- Department of Neurobiology and Anatomy, Robert C. Byrd Health Sciences Center, School of Medicine, West Virginia University, P.O. Box 9128, Morgantown, WV 26506-9128, USA
| | | |
Collapse
|