1
|
Zhang B, Sun Q, Chen Z, Shu F, Chen J. Evaluation of zinc tolerance and accumulation in eight cultivars of bermudagrass (Cynodon spp.): implications for zinc phytoremediation. Biometals 2023; 36:1377-1390. [PMID: 37530928 DOI: 10.1007/s10534-023-00524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Zinc (Zn) is a vital element for plant growth and development, however, excessive Zn is toxic to plants. Common bermudagrass (Cynodon dactylon (L.) Pers.) and hybrid bermudagrass (C. dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) are widely used turfgrass species with strong tolerance to diverse abiotic stresses, including excessive Zn2+ stress. However, the variation of zinc tolerance and accumulation in different bermudagrass cultivars remain unclear. In this study, we systematically analyzed the growth performance, physiological index and ion concentration in eight commercial cultivars of common and hybrid bermudagrass under different concentration of Zn2+ treatments using pot experiments. The results indicated that four cultivars of common bermudagrass could tolerate 20 mM Zn2+, whereas four cultivars of hybrid bermudagrass could only tolerate 10 mM Zn2+. Among the four common bermudagrass cultivars, cultivar Guanzhong and Common showed stronger Zn tolerance and accumulation abilities than other two cultivars. Further analyses of the expression of selected Zn homeostasis-related genes indicated that bermudagrass cultivars with stronger tolerance to excessive Zn have at least one expression-elevated gene involved in Zn homeostasis. These results not only expanded our understanding of Zn tolerance and accumulation in bermudagrass but also facilitated the application of commercial bermudagrass cultivars in phytoremediation of Zn pollution.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Qixue Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhuoting Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Fangzhi Shu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| |
Collapse
|
2
|
Li Z, Huang C, Han L. Differential Regulations of Antioxidant Metabolism and Cold-Responsive Genes in Three Bermudagrass Genotypes under Chilling and Freezing Stress. Int J Mol Sci 2023; 24:14070. [PMID: 37762373 PMCID: PMC10530996 DOI: 10.3390/ijms241814070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/29/2023] Open
Abstract
As a typical warm-season grass, bermudagrass growth and turf quality begin to decrease when the environmental temperature drops below 20 °C. The current study investigated the differential responses of three bermudagrass genotypes to chilling stress (8/4 °C) for 15 days and then freezing stress (2/-2 °C) for 2 days. The three genotypes exhibited significant variation in chilling and freezing tolerance, and Chuannong-3, common bermudagrass 001, and Tifdwarf were ranked as cold-tolerant, -intermediate, and -sensitive genotypes based on evaluations of chlorophyll content, the photochemical efficiency of photosystem II, oxidative damage, and cell membrane stability, respectively. Chuannong-3 achieved better tolerance through enhancing the antioxidant defense system to stabilize cell membrane and reactive oxygen species homeostasis after being subjected to chilling and freezing stresses. Chuannong-3 also downregulated the ethylene signaling pathway by improving CdCTR1 expression and suppressing the transcript levels of CdEIN3-1 and CdEIN3-2; however, it upregulated the hydrogen sulfide signaling pathway via an increase in CdISCS expression under cold stress. In addition, the molecular basis of cold tolerance could be associated with the mediation of key genes in the heat shock pathway (CdHSFA-2b, CdHSBP-1, CdHSP22, and CdHSP40) and the CdOSMOTIN in Chuannong-3 because the accumulation of stress-defensive proteins, including heat shock proteins and osmotin, plays a positive role in osmoprotection, osmotic adjustment, or the repair of denatured proteins as molecular chaperones under cold stress. The current findings give an insight into the physiological and molecular mechanisms of cold tolerance in the new cultivar Chuannong-3, which provides valuable information for turfgrass breeders and practitioners.
Collapse
Affiliation(s)
- Zhou Li
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Cheng Huang
- Department of Turf Science and Engineering, Sichuan Agricultural University, Chengdu 611130, China
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Wu L, Song L, Cao L, Meng L. Alleviation of Shade Stress in Chinese Yew ( Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). PLANTS (BASEL, SWITZERLAND) 2023; 12:2333. [PMID: 37375957 DOI: 10.3390/plants12122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, 'Taihang' and 'Fujian', were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in 'Taihang' and 'Fujian', respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linlin Song
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lifan Cao
- Engineering and Technology Research Center of Paper Mulberry Industry, Henan Academy of Sciences, Zhengzhou 451451, China
| | - Li Meng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
4
|
Ihtisham M, Hasanuzzaman M, El-Sappah AH, Zaman F, Khan N, Raza A, Sarraf M, Khan S, Abbas M, Hassan MJ, Li J, Zhao X, Zhao X. Primary plant nutrients modulate the reactive oxygen species metabolism and mitigate the impact of cold stress in overseeded perennial ryegrass. FRONTIERS IN PLANT SCIENCE 2023; 14:1149832. [PMID: 37063220 PMCID: PMC10103648 DOI: 10.3389/fpls.2023.1149832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Overseeded perennial ryegrass (Lolium perenne L.) turf on dormant bermudagrass (Cynodon dactylon Pers. L) in transitional climatic zones (TCZ) experience a severe reduction in its growth due to cold stress. Primary plant nutrients play an important role in the cold stress tolerance of plants. To better understand the cold stress tolerance of overseeded perennial ryegrass under TCZ, a three-factor and five-level central composite rotatable design (CCRD) with a regression model was used to study the interactive effects of nitrogen (N), phosphorus (P), and potassium (K) fertilization on lipid peroxidation, electrolyte leakage, reactive oxygen species (ROS) production, and their detoxification by the photosynthetic pigments, enzymatic and non-enzymatic antioxidants. The study demonstrated substantial effects of N, P, and K fertilization on ROS production and their detoxification through enzymatic and non-enzymatic pathways in overseeded perennial ryegrass under cold stress. Our results demonstrated that the cold stress significantly enhanced malondialdehyde, electrolyte leakage, and hydrogen peroxide contents, while simultaneously decreasing ROS-scavenging enzymes, antioxidants, and photosynthetic pigments in overseeded perennial ryegrass. However, N, P, and K application mitigated cold stress-provoked adversities by enhancing soluble protein, superoxide dismutase, peroxide dismutase, catalase, and proline contents as compared to the control conditions. Moreover, N, P, and, K application enhanced chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in overseeded perennial ryegrass under cold stress as compared to the control treatments. Collectively, this 2-years study indicated that N, P, and K fertilization mitigated cold stress by activating enzymatic and non-enzymatic antioxidants defense systems, thereby concluding that efficient nutrient management is the key to enhanced cold stress tolerance of overseeded perennial ryegrass in a transitional climate. These findings revealed that turfgrass management will not only rely on breeding new varieties but also on the development of nutrient management strategies for coping cold stress.
Collapse
Affiliation(s)
- Muhammad Ihtisham
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Ahmed H. El-Sappah
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fawad Zaman
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, China
| | - Nawab Khan
- College of Management, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ali Raza
- Chengdu Institute of Biology, University of Chinese Academy of Sciences, Beijing, China
| | - Mohammad Sarraf
- Department of Horticultural Sciences, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, China
| | - Manzar Abbas
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jia Li
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xianming Zhao
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| | - Xin Zhao
- College of Agriculture, Forestry, and Food Engineering, Yibin University, Yibin, Sichuan, China
| |
Collapse
|
5
|
Taher D, Nofal E, Hegazi M, El-Gaied MA, El-Ramady H, Solberg SØ. Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. HORTICULTURAE 2023; 9:49. [DOI: 10.3390/horticulturae9010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Turfgrasses are considered an important part of the landscape and ecological system of golf courses, sports fields, parks, and home lawns. Turfgrass species are affected by many abiotic stresses (e.g., drought, salinity, cold, heat, waterlogging, and heavy metals) and biotic stresses (mainly diseases and pests). In the current study, seashore paspalum (Paspalum vaginatum Sw.) and Tifway bermudagrass (Cynodon transvaalensis Burtt Davy × C. Dactylon) were selected because they are popular turfgrasses frequently used for outdoor lawns and sport fields. The effect of the combined stress from both soil salinity and cold on these warm season grasses was investigated. Some selected organic and inorganic amendments (i.e., humic acid, ferrous sulphate, and silicon) were applied as foliar sprays five times during the winter season from late October to March. This was repeated over two years in field trials involving salt-affected soils. The physiological and chemical parameters of the plants, including plant height; fresh and dry weight per plot; total chlorophyll content; and nitrogen, phosphorus, iron, and potassium content, were measured. The results showed that all the studied amendments improved the growth of seashore paspalum and Tifway bermudagrass during this period compared to the control, with a greater improvement observed when using ferrous sulphate and humic acid compared to silicon. For seashore paspalum, the highest chlorophyll content in April was recorded after the application of ferrous sulphate at a level of 1000 ppm. The current research indicates that when grown on salt-affected soils, these amendments can be used in warm-season grasses to maintain turf quality during cold periods of the year. Further research is needed to examine any negative long-term effects of these amendments and to explain their mechanisms.
Collapse
|
6
|
Zhou X, Yin Y, Wang G, Amombo E, Li X, Xue Y, Fu J. Mitigation of salt stress on low temperature in bermudagrass: resistance and forage quality. FRONTIERS IN PLANT SCIENCE 2022; 13:1042855. [PMID: 36388506 PMCID: PMC9650215 DOI: 10.3389/fpls.2022.1042855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Climate change causes plants encountering several abiotic stresses simultaneously. Responses of plants to a single stress has been comprehensively studied, but it is hard to speculated infer the effects of stress combination based on these researches. Here, the response mechanism of bermudagrass to low temperature and salt treatment was investigated in this study. The results showed that low temperature (LT) treatment decreased the relative growth rate, chlorophyll fluorescence transient curve, biomass, and crude fat content of bermudagrass, whereas low temperature + salt (LT+S) treatment greatly undermined these declines. Furthermore, at 6 h and 17 d, the expression levels of glyoxalase I (GLYI), Cu-Zn/superoxide dismutase (Cu-Zn/SOD), peroxidase 2 (POD2), and oxidative enzyme 1(CAT1) in roots were considerably higher in the low temperature + salt treatment than in the low temperature treatment. Low temperature stress is more detrimental to bermudagrass, but mild salt addition can mitigate the damage by enhancing photosynthesis and improving the expression of antioxidant system genes (Cu-Zn/SOD, POD2 and CAT1) and glyoxalase system GLYI gene in roots. This study summarized the probable interaction mechanism of low temperature and salt stress on bermudagrass, which can provide beneficial reference for the growth of fodder in cold regions.
Collapse
|
7
|
Effect of irrigation with treated wastewater on bermudagrass (Cynodon dactylon (L.) Pers.) production and soil characteristics and estimation of plant nutritional input. PLoS One 2022; 17:e0271481. [PMID: 35839230 PMCID: PMC9286233 DOI: 10.1371/journal.pone.0271481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, climate change has greatly affected rainfall and air temperature levels leading to a reduction in water resources in Southern Europe. This fact has emphasized the need to focus on the use of non-conventional water resources for agricultural irrigation. The reuse of treated wastewater (TWW) can represent a sustainable solution, reducing the consumption of freshwater (FW) and the need for mineral fertilisers. The main aim of this study was to assess, in a three-year period, the effects of TWW irrigation compared to FW on the biomass production of bermudagrass [Cynodon dactylon (L.) Pers.] plants and soil characteristics and to estimate the nutritional input provided by TWW irrigation. TWW was obtained by a constructed wetland system (CWs) which was used to treat urban wastewater. The system had a total surface area of 100 m2. An experimental field of bermudagrass was set up close to the system in a Sicilian location (Italy), using a split-plot design for a two-factor experiment with three replications. Results highlighted a high organic pollutant removal [five days biochemical oxygen demand (BOD5): 61%, chemical oxygen demand (COD): 65%] and a good efficiency in nutrients [total nitrogen (TN): 50%, total phosphorus (TP): 42%] of the CWs. Plants irrigated with TWW showed higher dry aboveground dry-weight (1259.3 kg ha-1) than those irrigated with FW (942.2 kg ha-1), on average. TWW irrigation approximately allowed a saving of 50.0 kg TN ha-1 year-1, 24.0 kg TP ha-1 year-1 and 29.0 kg K ha-1 year-1 on average with respect to commonly used N-P-K fertilisation programme for bermudagrass in the Mediterranean region. Soil salinity increased significantly (p ≤ 0.01) over the years and was detected to be higher in TWW-irrigated plots (+6.34%) in comparison with FW-irrigated plots. Our findings demonstrate that medium-term TWW irrigation increases the biomass production of bermudagrass turf and contributes to save significant amounts of nutrients, providing a series of agronomic and environmental benefits.
Collapse
|
8
|
Xu X, Liu W, Liu X, Cao Y, Li X, Wang G, Fu C, Fu J. Genetic manipulation of bermudagrass photosynthetic biosynthesis using Agrobacterium-mediated transformation. PHYSIOLOGIA PLANTARUM 2022; 174:e13710. [PMID: 35567521 DOI: 10.1111/ppl.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Bermudagrass is one of the most extensively used warm-season grasses. It is widely used in landscaping, stadium construction and soil remediation due to its excellent regeneration, trampling and stress tolerances. However, studies on its regulatory mechanism and variety improvement by genetic engineering are still at a standstill, owing to its genetic variability and intrinsic limits linked with some resistance to Agrobacterium infection. In this study, we established a higher efficient Agrobacterium-mediated transformation via screening for vital embryogenic callus and improving infection efficiency. The superior callus was light yellow, hard granular and compact, determined with a differentiation rate of more than 95%. The optimized infestation courses by gentle shaking, vacuuming and sonicating were used. The infested calluses were co-cultured for 3 days, followed by desiccation treatments for 1 day to get higher infection efficiency. Then the CdHEMA1 gene, essential for chlorophyll biosynthesis, was cloned and transferred into bermudagrass to validate the aforementioned optimization procedures integrally. Molecular-level analyses indicated that the CdHEMA1 gene had successfully integrated and was greatly increased in transgenic seedlings. Results of the photosynthetic capacity assessment showed that CdHEMA1 overexpression may considerably enhance the contents of photosynthetic pigments, OJIP curve and reaction center density (RC/CSo) to absorb (ABS/CSo, ABS/CSM) and capture (TRo/CSo) more light energy, hence improve the performance indices PIABS and PICS compared to the wild type. The successful completion of this project would provide a solid platform for further gene function study and molecular breeding of bermudagrass.
Collapse
Affiliation(s)
- Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoyan Liu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Yingping Cao
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics and CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, China
| |
Collapse
|
9
|
Cao Y, Yang K, Liu W, Feng G, Peng Y, Li Z. Adaptive Responses of Common and Hybrid Bermudagrasses to Shade Stress Associated With Changes in Morphology, Photosynthesis, and Secondary Metabolites. FRONTIERS IN PLANT SCIENCE 2022; 13:817105. [PMID: 35310644 PMCID: PMC8928391 DOI: 10.3389/fpls.2022.817105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Alteration of ploidy in one particular plant species often influences their environmental adaptation. Warm-season bermudagrass is widely used as forage, turfgrass, and ground-cover plant for ecological remediation, but exhibits low shade tolerance. Adaptive responses to shade stress between triploid hybrid bermudagrass cultivars ["Tifdwarf" (TD), "Tifsport" (TS), and "Tifway" (TW)] and tetraploid common bermudagrass cultivar "Chuanxi" (CX) were studied based on changes in phenotype, photosynthesis, and secondary metabolites in leaves and stems. Shade stress (250 luminance, 30 days) significantly decreased stem diameter and stem internode length, but did not affect the leaf width of four cultivars. Leaf length of CX, TD, or TW showed no change in response to shade stress, whereas shade stress significantly elongated the leaf length of TS. The CX and the TS exhibited significantly higher total chlorophyll (Chl), Chl a, carotenoid contents, photosynthetic parameters [PSII photochemical efficiency (Fv/Fm), transpiration rate, and stomatal conductance] in leaves than the TW and the TD under shade stress. The CX also showed a significantly higher performance index on absorption basis (PIABS) in leaf and net photosynthetic rate (Pn) in leaf and stem than the other three cultivars under shade stress. In addition, the TS maintained higher proantho cyanidims content than the TW and the TD after 30 days of shade stress. Current results showed that tetraploid CX exhibited significantly higher shade tolerance than triploid TD, TS, and TW mainly by maintaining higher effective photosynthetic leaf area, photosynthetic performance of PSI and PSII (Pn and Fv/Fm), and photosynthetic pigments as well as lower Chl a/b ratio for absorption, transformation, and efficient use of light energy under shade stress. For differential responses to shade stress among three triploid cultivars, an increase in leaf length and maintenance of higher Fv/Fm, gas exchange, water use efficiency, carotenoid, and proanthocyanidin contents in leaves could be better morphological and physiological adaptations of TS to shade than other hybrid cultivars (TD and TW).
Collapse
|
10
|
Yin YL, Xu YN, Li XN, Fan SG, Wang GY, Fu JM. Physiological integration between Bermudagrass ramets improves overall salt resistance under heterogeneous salt stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13655. [PMID: 35243634 DOI: 10.1111/ppl.13655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/20/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Connected ramets of colonal plants often suffer from different environmental conditions such as light, nutrient, and stress. Colonal Bermudagrass (Cynodon dactylon [L.] Pers.) can form interconnected ramets and this connection facilitates the tolerance to abiotic stress, which is a kind of physiological integration. However, how bermudagrass responds to heterogeneously distributed salt stress needs to be further elucidated. Here, we demonstrated that severance of stolons aggravated the damage of salt-stressed ramets, displaying higher relative electrolytic leakage (EL), lower content of chlorophyll, higher accumulation of Na+ , and serious oxidative damages. This finding implied the positive effects of the physiological integration of bermudagrass on salt tolerance. The unstressed ramets connected with the stressed one were mildly injured, implying the supporting and sacrifice function of the unstressed ramets. Physiological integration did not mediate the translocation of Na+ among ramets, but induced a higher expression of salt overly sensitive (SOS) genes in the stressed ramets, consequently reducing the accumulation of Na+ in leaves and roots. In addition, physiological integration upregulated the genes expression and enzymes activity of catalase (CAT) and peroxidase (POD) in both stressed and unstressed ramets. This granted a stronger antioxidant ability of the whole clonal plants under salt stress. Enhanced Na+ transfer and increased reactive oxygen species (ROS) scavenging are mechanisms that likely contribute to the physiological integration leading to the salt tolerance of bermudagrass.
Collapse
Affiliation(s)
- Yan-Ling Yin
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Ya-Nan Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xiao-Ning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shu-Gao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Guang-Yang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jin-Min Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|
11
|
Wang W, Shao A, Amombo E, Fan S, Xu X, Fu J. Transcriptome-wide identification of MAPKKK genes in bermudagrass ( Cynodon dactylon L.) and their potential roles in low temperature stress responses. PeerJ 2020; 8:e10159. [PMID: 33194398 PMCID: PMC7602684 DOI: 10.7717/peerj.10159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/21/2020] [Indexed: 11/20/2022] Open
Abstract
As upstream components of MAPK cascades, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascades. MAPK cascades are universal modules of signal transduction in eukaryotic organisms and play crucial roles in plant development processes and in responses to biotic and abiotic stress and signal transduction. Members of the MAPKKK gene family have been identified in several plants,however, MAPKKKs have not been systematically studied in bermudagrass (Cynodon dactylon L.). In this study, 55 potential CdMAPKKKs were produced from bermudagrass transcriptome data, of which 13 belonged to the MEKK, 38 to the Raf, and 4 to the ZIK subfamily. Multiple alignment and conserved motif analysis of CdMAPKKKs supported the evolutionary relationships inferred from phylogenetic analyses. Moreover, the distribution pattern in Poaceae species indicated that members of the MAPKKK family were conserved among almost all diploid species, and species-specific polyploidy or higher duplication ratios resulted in an expansion of the MAPKKK family. In addition, 714 co-functional links which were significantly enriched in signal transduction, responses to temperature stimuli, and other important biological processes of 55 CdMAPKKKs were identified using co-functional gene networks analysis; 30 and 19 co-functional genes involved in response to cold or heat stress, respectively, were also identified. Results of promoter analyses, and interaction network investigation of all CdMAPKKKs based on the rice homologs suggested that CdMAPKKKs are commonly associated with regulation of numerous biological processes. Furthermore, 12 and 13 CdMAPKKKs were significantly up- and downregulated, respectively, in response to low temperature stress; among them, six CdMAPKKKs were significantly induced by low temperature stress, at least at one point in time. This is the first study to conduct identification and functional analysis of the MAPKKK gene family in bermudagrass, and our results provide a foundation for further research on the functions of CdMAPKKKs in response to low temperature stress.
Collapse
Affiliation(s)
- Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - An Shao
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Erick Amombo
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Shugao Fan
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Xiao Xu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| |
Collapse
|