1
|
Bravo D, Quiroga-Mateus R, López-Casallas M, Torres S, Contreras R, Otero ACM, Araujo-Carrillo GA, González-Orozco CE. Assessing the cadmium content of cacao crops in Arauca, Colombia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:387. [PMID: 38509267 PMCID: PMC10954870 DOI: 10.1007/s10661-024-12539-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The district of Arauca is the second-largest producer of cacao in Colombia. However, despite its quality, it faces issues for export due to levels of cadmium (Cd) higher than the regulatory thresholds. A central question is how it may impact agricultural performance in the presence of Cd in cacao and chocolates. This study quantified Cd in cacao plantations from Arauca. Thus, 180 farms were assessed in the municipalities of Arauquita, Fortul, Saravena, and Tame. Five sample types (soil, irrigation channel sediment, soil litter, cacao seeds, and chocolates) were assessed for Cd. As a technological innovation, the new MXRF technology was used for Cd in chocolates. The sequence of Cd content was soil litter > chocolate > soils > cacao seeds > irrigation-channel sediment. A gradient north-south of Cd content in soil was observed, where highest content was found in farms near the Arauca River, and lower farther away. In irrigation channel sediment, Cd levels averaged 0.07 mg kg-1. The Cd content in cacao seeds was 0.78 mg kg-1 on average. Cd content in chocolates was above the threshold (1.10 mg kg-1 on average, including several cacao mass percentages). These artisanal chocolate bars produced by single farms were near the limit of Cd set by the European Union (up to 0.8 mg kg-1). Therefore, mixing beans from different farms could reduce their Cd content. The present study underscores the complexity of Cd distribution, emphasizing the importance of integrating soil, crop, and landscape features in managing and mitigating Cd levels in cacao.
Collapse
Affiliation(s)
- Daniel Bravo
- Laboratory of Soil Microbiology and Calorimetry, Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia.
| | - Ruth Quiroga-Mateus
- Laboratory of Soil Microbiology and Calorimetry, Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia
| | - Marcela López-Casallas
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Shirley Torres
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Ramiro Contreras
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Andres Camilo Mendez Otero
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| | - Gustavo A Araujo-Carrillo
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 Vía Bogotá-Mosquera, Cundinamarca, Colombia
| | - Carlos E González-Orozco
- Centro de Investigación La Libertad, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 17 Vía Puerto López, Villavicencio, Meta, Colombia
| |
Collapse
|
2
|
Zapata-Alvarez A, Bedoya-Vergara C, Porras-Barrientos LD, Rojas-Mora JM, Rodríguez-Cabal HA, Gil-Garzon MA, Martinez-Alvarez OL, Ocampo-Arango CM, Ardila-Castañeda MP, Monsalve-F ZI. Molecular, biochemical, and sensorial characterization of cocoa ( Theobroma cacao L.) beans: A methodological pathway for the identification of new regional materials with outstanding profiles. Heliyon 2024; 10:e24544. [PMID: 38322871 PMCID: PMC10844050 DOI: 10.1016/j.heliyon.2024.e24544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Cocoa is an economically important product in Colombia. On-farm germplasm evaluations enable the selection of superior genotypes for propagation and distribution across the country. This study examined 12 cocoa samples from Antioquia along with five reference materials, employing 96 single nucleotide polymorphism (SNP) markers. Furthermore, these genetic findings were correlated with physical, chemical, and sensory attributes. Primary coordinate analysis revealed that the majority of samples were hybrids derived from five original germplasm pools, including Criollo, Amelonado, and three Upper Amazon Forastero cocoas. The integral profile of the 12 selected materials was classified into Modern Criollo (Rodriguez-Medina et al., 2019) [3], Forasteros (Rodriguez-Medina et al., 2019) [3], and Trinitarios (Borja Fajardo et al., 2022) [6]. Three key factors were identified to best account for the sample classification: type of variety, functional properties, and quality.
Collapse
Affiliation(s)
- Andrea Zapata-Alvarez
- University of Antioquia, Faculty of Exact and Natural Sciences, Institute of Biology, Agrobiotechnology Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Carolina Bedoya-Vergara
- La Sallista University Corporation, Caldas, Antioquia, Colombia, Food Engineering Research Group, GRIAL, Carrera 51 N°.118 sur 57, Caldas, Antioquia, Colombia
| | - Luis D. Porras-Barrientos
- University of Antioquia, Faculty of Pharmaceutical and Food Sciences, Sensory Science Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Jessica M. Rojas-Mora
- Metropolitan Technological Institute, Faculty of Exact and Applied Sciences, Medellín, Colombia
| | - Héctor A. Rodríguez-Cabal
- University of Antioquia, Faculty of Exact and Natural Sciences, Institute of Biology, Agrobiotechnology Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Maritza A. Gil-Garzon
- La Sallista University Corporation, Caldas, Antioquia, Colombia, Food Engineering Research Group, GRIAL, Carrera 51 N°.118 sur 57, Caldas, Antioquia, Colombia
- Metropolitan Technological Institute, Faculty of Exact and Applied Sciences, Medellín, Colombia
| | - Olga L. Martinez-Alvarez
- University of Antioquia, Faculty of Pharmaceutical and Food Sciences, Sensory Science Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Carlos M. Ocampo-Arango
- University of Antioquia, Faculty of Pharmaceutical and Food Sciences, Sensory Science Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Maurem P. Ardila-Castañeda
- University of Antioquia, Faculty of Pharmaceutical and Food Sciences, Sensory Science Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| | - Zulma I. Monsalve-F
- University of Antioquia, Faculty of Exact and Natural Sciences, Institute of Biology, Agrobiotechnology Research Group, Calle 67 N°. 53 - 108, A.A 1226, Medellín, Colombia
| |
Collapse
|
3
|
Galvis DA, Jaimes-Suárez YY, Rojas Molina J, Ruiz R, León-Moreno CE, Carvalho FEL. Unveiling Cacao Rootstock-Genotypes with Potential Use in the Mitigation of Cadmium Bioaccumulation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2941. [PMID: 37631153 PMCID: PMC10458809 DOI: 10.3390/plants12162941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The accumulation of high cadmium (Cd) levels in cacao beans (Theobroma cacao) generate several commercial and health issues. We hypothesized that cacao phenotypic and genotypic diversity could provide new insights to decrease Cd accumulation in cacao beans. Nine cacao rootstock genotypes were evaluated for up to 90 days under 0, 6, and 12 (mg·kg-1) of CdCl2 exposure and Cd content and plant growth dynamics were measured in leaves, stems, and roots. Data revealed that all cacao genotypes studied here were highly tolerant to Cd, since they presented tolerance index ≥ 60%. In shoots, EET61 and PA46 presented the higher (~270 mg·kg DW-1) and lower (~20 mg·kg DW-1) Cd concentration, respectively. Accordingly, only the EET61 showed an increase in the shoot cadmium translocation factor over the 90 days of exposure. However, when analyzing cadmium allocation to different organs based on total plant dry mass production, none of the genotypes maintained high Cd compartmentalization into roots, since P46, which was the genotype with the highest allocation of Cd to the roots, presented only 20% of total cadmium per plant in this plant organ and 80% allocated into the shoots, under Cd 12 (mg·kg-1) and after 90 days of exposure. Thus, genotypic/phenotypic variability in cacao rootstocks may provide valuable strategies for maximizing the reduction in Cd content in shoots. In this sense, IMC67 and PA46 were the ones that stood out in the present study.
Collapse
Affiliation(s)
- Donald A. Galvis
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia;
| | - Yeirme Y. Jaimes-Suárez
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Jairo Rojas Molina
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Rosalba Ruiz
- Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 230002, Colombia;
| | - Clara E. León-Moreno
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| | - Fabricio Eulalio Leite Carvalho
- Centro de Investigación La Suiza, Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Rionegro 250047, Colombia
| |
Collapse
|
4
|
Cerón-Souza I, Delgadillo-Duran D, Polo-Murcia SM, Sarmiento-Naizaque ZX, Reyes-Herrera PH. Prioritizing Colombian plant genetic resources for investment in research using indicators about the geographic origin, vulnerability status, economic benefits, and food security importance. BIODIVERSITY AND CONSERVATION 2023; 32:2221-2261. [PMID: 37255861 PMCID: PMC10195663 DOI: 10.1007/s10531-023-02599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Germplasm banks are the most significant repository for plant genetic resources for food and agriculture (PGRFA) worldwide. Despite their strategic importance, national germplasm banks of tropical megadiverse developing countries such as Colombia have extremely limited funds. Therefore, making strategic decisions about research investment is essential. Here, we designed a data-driven approach to build an index that sorts Colombian PGRFA into three groups: high, medium, or low priority, based on four pillars of information from open-access databases and aligned with the sustainable goals of no poverty and zero hunger: Geographic origin, vulnerability status, economic benefits, and food security importance. We analyzed 345 PGRFA using the index, separating them into two groups, 275 already conserved in the Colombian germplasm bank (BGVCOL group) and 70 not currently conserved in the BGVCOL (NCB group). We used fuzzy logic to classify each PGRFA by each pillar and integrate it to obtain a priority index. Missing data for native crops were frequent in the BGVCOL group. Therefore we adopted an imputation strategy to fill the gaps and calculated the uncertainty. After applying the index, PGRFA with higher priority were 24 (8.72%) from the BGVCOL (i.e., 15 potatoes, three tomatoes, two tree tomatoes, pineapple, cocoa, papaya, and yacon) and one from NCB (i.e., coffee). We concluded that this methodology successfully prioritized PGRFA in Colombia and shows the big holes of knowledge for future research and alternatives to improve this index. The versatility of this methodology could be helpful in other genebanks with budget limitations for research investment. Supplementary Information The online version contains supplementary material available at 10.1007/s10531-023-02599-7.
Collapse
Affiliation(s)
- I. Cerón-Souza
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - D. Delgadillo-Duran
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - S. M. Polo-Murcia
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - Z. X. Sarmiento-Naizaque
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| | - P. H. Reyes-Herrera
- CI Tibaitatá, Corporación Colombiana de Investigación Agropecuaria, AGROSAVIA, Km 14 via Mosquera, Bogotá, Colombia
| |
Collapse
|
5
|
Vanderschueren R, Wantiez L, Blommaert H, Flores J, Chavez E, Smolders E. Revealing the pathways of cadmium uptake and translocation in cacao trees (Theobroma cacao L.): A 108Cd pulse-chase experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161816. [PMID: 36708823 DOI: 10.1016/j.scitotenv.2023.161816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The pathways through which cadmium (Cd) is taken up and loaded into cacao beans (nibs) are yet to be revealed. Previous work suggested that Cd loading into cacao nibs may occur via direct xylem uptake rather than phloem-mediated redistribution from the leaves. A stable isotope (108Cd) pulse-chase experiment was set up to identify the pathways of Cd loading into cacao nibs. The topsoil beneath two mature cacao trees in the field was enriched in 108Cd via surface irrigation with a spiked solution. The increase in 108Cd isotopic abundance (IA) in the plant tissues was followed up for 548 days after spiking. The 108Cd IA in the plant tissues increased from natural abundance (0.89 %) to 7.0 % (tree A) and 10.1 % (tree B) at equilibrium. The tracer was taken up in the plant tissues in the order immature leaves > mature leaves > nibs in both trees, while tracer uptake in flowers and cherelles was less consistent between the trees. Half of the equilibrium 108Cd IA was reached in the nibs at 191 days after spiking, significantly later than corresponding values for mature (151 days) and immature leaves (117 days). Pod maturation from flower stage takes about 6 months with most Cd entering the nibs at the last stage of development. The rather slow rise in the 108Cd IA in the nibs compared to the leaves hence suggests that Cd in cacao nibs likely originates from phloem-redistribution from the stem, branches or mature leaves and not from direct root-to-nib transport via the xylem.
Collapse
Affiliation(s)
- Ruth Vanderschueren
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Léna Wantiez
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Hester Blommaert
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTERRE, Grenoble, France
| | - Julia Flores
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Eduardo Chavez
- Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias de la Vida, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Erik Smolders
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium.
| |
Collapse
|
6
|
Gil A, Brennan M, Chaudhary AK, Maximova SN. Evaluation of cacao projects in Colombia: The case of the rural Productive Partnerships Project (PAAP). EVALUATION AND PROGRAM PLANNING 2023; 97:102230. [PMID: 36702005 DOI: 10.1016/j.evalprogplan.2023.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Identifying the effectiveness of agricultural interventions is a challenge faced by many international aid initiatives. This article reports on our efforts to document the success of agricultural aid interventions. The study is focused on evaluating cacao projects in Colombia, specifically on assessing the success of the rural Productive Partnerships Project (PAAP). The two approaches used to assess the project's success included the degree of accomplishment of four of the PAAP project's objectives and a measurement of the project performance at the local level, for which an existing performance index was utilized. Quantitative data were obtained from the project's evaluation platform developed by the PAAP project coordinators. Based on our first evaluation approach, we found that the four project objectives evaluated were not fully accomplished. While our results using the performance index provide baseline data for upcoming work assessing cacao projects' performance, the absence of precedent information constrained its interpretation. Finally, the paper offers feasible, affordable, and practical recommendations that could benefit future program planning and evaluation of international aid interventions, particularly on cacao projects worldwide.
Collapse
Affiliation(s)
- Alejandro Gil
- The Pennsylvania State University, Department of Agricultural Economics, Sociology and Education, 009 Ferguson Building, University Park, PA, 16802, USA; Compañía Nacional de Chocolates S.A.S, Carrera 43ª No.1 A Sur 143, Medellín, Colombia.
| | - Mark Brennan
- The Pennsylvania State University, Department of Agricultural Economics, Sociology, and Education, 204C Ferguson Building, University Park, PA, 16802, USA
| | - Anil Kumar Chaudhary
- The Pennsylvania State University, Department of Agricultural Economics, Sociology, and Education, 209C Ferguson Building, University Park, PA, 16802, USA
| | - Siela N Maximova
- The Pennsylvania State University, Department of Plant Science and Huck Institutes of the Life Sciences, 421 Life Sciences Building, University Park, PA, 16802, USA
| |
Collapse
|
7
|
Jaimes-Suárez YY, Carvajal-Rivera AS, Galvis-Neira DA, Carvalho FEL, Rojas-Molina J. Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. FRONTIERS IN PLANT SCIENCE 2022; 13:921469. [PMID: 35968107 PMCID: PMC9366013 DOI: 10.3389/fpls.2022.921469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Low technological knowledge in production chains, global climate change, and misinformation are concrete threats to food security. In addition, these combined threats also trigger ecological instability in megadiverse areas of the world, especially in some cacao-producing countries in South America, where this crop plays an important socio-economic role, even being used to replace illicit crops. Accordingly, the use of agroforestry systems approaches has emerged as a good alternative to maintain productivity, add high-value commodities to producers, and provide important ecosystem services for sustainable agriculture. However, limitations associated with the competition for resources between the species composing the system, and the higher incidence of some diseases, have led many producers to abandon this strategy, opting for monoculture. In this review, we seek to gather the main information available in the literature, aiming to answer the question: what is the real scientific evidence that supports the benefits and harms of adopting agroforestry systems in cacao production? We seek to make critical scrutiny of the possible negative effects of certain associations of the agroforestry system with biotic and abiotic stress in cacao. Here, we review the possible competition for light and nutrients and discuss the main characteristics to be sought in cacao genotypes to optimize these inter-specific relationships. In addition, we review the research advances that show the behavior of the main cacao diseases (Witch's broom disease, frosty pod rot, black pod rot) in models of agroforestry systems contrasted with monoculture, as well as the optimization of agronomic practices to reduce some of these stresses. This compendium, therefore, sheds light on a major gap in establishing truly sustainable agriculture, which has been treated much more from the perspective of negative stigma than from the real technological advantages that can be combined to the benefit of a balanced ecosystem with generating income for farmers.
Collapse
|
8
|
González-Orozco CE, Pesca A. Regionalization of Cacao (Theobroma cacao L.) in Colombia. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.925800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A detailed description and up to date biogeographic regionalization of cultivated cacao (Theobroma cacao L.) are lacking in Colombia. Here we propose a new biogeographical regionalization of cultivated cacao for Colombia. We used spatial partitioning, geospatial mapping of macro/microclimate variables and a hierarchical area taxonomy classification to describe, define and propose the biogeographical regions of cultivated cacao. The cacao regions were identified from distributions of 4,974 cocoa producing farms across Colombia. Our proposed regionalization comprises four regions (north-eastern, north-western, south-western, east), 31 sub-regions and 54 provinces. Solar radiation, precipitation, and soil temperature seasonality best explained the biogeographical regions. Rivers networks helped explain the differences at the sub-regional and provinces level. Our results indicate that biogeography is a strong indicator of cacao's agricultural expansion across the different growing regions in Colombia. This up-to-date biogeographical classification could be a useful tool for agricultural planning of cacao in Colombia. Particularly, the baseline information provided might be of use on the development of denominations of origin for cacao.
Collapse
|
9
|
Borja Fajardo JG, Horta Tellez HB, Peñaloza Atuesta GC, Sandoval Aldana AP, Mendez Arteaga JJ. Antioxidant activity, total polyphenol content and methylxantine ratio in four materials of Theobroma cacao L. from Tolima, Colombia. Heliyon 2022; 8:e09402. [PMID: 35600450 PMCID: PMC9118492 DOI: 10.1016/j.heliyon.2022.e09402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
The International Cocoa Organization recognized Colombian cocoa as "fine aroma," but in recent years, clone CCN 51 has grown in popularity, widely due to its high yield. The Tolima department is the fourth producer of cacao in Colombia, but there is a lack of knowledge of the chemical properties of regional cocoa genotypes. The aim of this study was to evaluate the morphological, antioxidant activity, total polyphenol content and the methylxanthines ratio of four regional genotypes (UTLP02, UTVE01, UTGC01 and UTLM02) of Theobroma cacao L. from Tolima, Colombia. The universal clone of CCN51 was used as control. The highest values for the qualitative descriptors were obtained by the variants UTVE01 and CCN51 with FRAP and TPC ranging from 44.51 ± 0.90 to 106.77 ± 5.21 mg GAE/g and 27.13 ± 0.14 to 52.12 ± 4.71 mmol TE/g respectively. The genotypes with the highest values for FRAP and TPC were UTGC01 and CCN51. According to the methylxanthine ratio, UTVE01 was classified as Criollo, while UTLM02, UTGC01 and UTLP02, CCN51 are Trinitario and Forastero, respectively. Although CCN51 is considered a remarkable material in terms of productivity, the genotypes evaluated present good yields and interesting values of TPC and antioxidant activity, making them promising trees in local breeding programs.
Collapse
Affiliation(s)
- Juan G Borja Fajardo
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Heidi B Horta Tellez
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Giann C Peñaloza Atuesta
- Natural Products Research Group, Department of Chemistry, Faculty of Sciences, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Angélica P Sandoval Aldana
- Interdisciplinary Research Group on Tropical Fruit Cultivation, Faculty of Agronomic Engineering, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| | - Jonh J Mendez Arteaga
- Natural Products Research Group, Department of Chemistry, Faculty of Sciences, University of Tolima, Cl. 42 #1b-1, Ibagué, Colombia
| |
Collapse
|
10
|
A Crop Modelling Strategy to Improve Cacao Quality and Productivity. PLANTS 2022; 11:plants11020157. [PMID: 35050044 PMCID: PMC8778100 DOI: 10.3390/plants11020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/03/2022]
Abstract
Cacao production systems in Colombia are of high importance due to their direct impact in the social and economic development of smallholder farmers. Although Colombian cacao has the potential to be in the high value markets for fine flavour, the lack of expert support as well as the use of traditional, and often times sub-optimal technologies makes cacao production negligible. Traditionally, cacao harvest takes place at exactly the same time regardless of the geographic and climatic region where it is grown, the problem with this strategy is that cacao beans are often unripe or over matured and a combination of both will negatively affect the quality of the final cacao product. Since cacao fruit development can be considered as the result of a number of physiological and morphological processes that can be described by mathematical relationships even under uncontrolled environments. Environmental parameters that have more association with pod maturation speed should be taken into account to decide the appropriate time to harvest. In this context, crop models are useful tools to simulate and predict crop development over time and under multiple environmental conditions. Since harvesting at the right time can yield high quality cacao, we parameterised a crop model to predict the best time for harvest cacao fruits in Colombia. The cacao model uses weather variables such as temperature and solar radiation to simulate the growth rate of cocoa fruits from flowering to maturity. The model uses thermal time as an indicator of optimal maturity. This model can be used as a practical tool that supports cacao farmers in the production of high quality cacao which is usually paid at a higher price. When comparing simulated and observed data, our results showed an RRMSE of 7.2% for the yield prediction, while the simulated harvest date varied between +/−2 to 20 days depending on the temperature variations of the year between regions. This crop model contributed to understanding and predicting the phenology of cacao fruits for two key cultivars ICS95 y CCN51.
Collapse
|
11
|
Egan LM, Hofmann RW, Ghamkhar K, Hoyos-Villegas V. Prospects for Trifolium Improvement Through Germplasm Characterisation and Pre-breeding in New Zealand and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:653191. [PMID: 34220882 PMCID: PMC8242581 DOI: 10.3389/fpls.2021.653191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Trifolium is the most used pastoral legume genus in temperate grassland systems, and a common feature in meadows and open space areas in cities and parks. Breeding of Trifolium spp. for pastoral production has been going on for over a century. However, the breeding targets have changed over the decades in response to different environmental and production pressures. Relatively small gains have been made in Trifolium breeding progress. Trifolium breeding programmes aim to maintain a broad genetic base to maximise variation. New Zealand is a global hub in Trifolium breeding, utilising exotic germplasm imported by the Margot Forde Germplasm Centre. This article describes the history of Trifolium breeding in New Zealand as well as the role and past successes of utilising genebanks in forage breeding. The impact of germplasm characterisation and evaluation in breeding programmes is also discussed. The history and challenges of Trifolium breeding and its effect on genetic gain can be used to inform future pre-breeding decisions in this genus, as well as being a model for other forage legumes.
Collapse
Affiliation(s)
- Lucy M. Egan
- CSIRO Agriculture and Food, Narrabri, NSW, Australia
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Rainer W. Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Kioumars Ghamkhar
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Valerio Hoyos-Villegas
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Genome-Wide Association Study Reveals Novel Candidate Genes Associated with Productivity and Disease Resistance to Moniliophthora spp. in Cacao ( Theobroma cacao L.). G3-GENES GENOMES GENETICS 2020; 10:1713-1725. [PMID: 32169867 PMCID: PMC7202020 DOI: 10.1534/g3.120.401153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cacao (Theobroma cacao L.), the source of chocolate, is one of the most important commodity products worldwide that helps improve the economic livelihood of farmers. Diseases like frosty pod rot caused by Moniliophthora roreri and witches’ broom caused by Moniliophthora perniciosa limit the cacao productivity, this can be solved by using resistant varieties. In the current study, we sequenced 229 cacao accessions using genotyping-by-sequencing to examine the genetic diversity and population structure employing 9,003 and 8,131 single nucleotide polymorphisms recovered by mapping against two cacao genomes (Criollo B97-61/B2 v2 and Matina 1-6 v1.1). In the phenotypic evaluation, three promising accessions for productivity and 10 with good tolerance to the frosty pod rot and witches’ broom diseases were found. A genome-wide association study was performed on 102 accessions, discovering two genes associated with productivity and seven to disease resistance. The results enriched the knowledge of the genetic regions associated with important cacao traits that can have significant implications for conservation and breeding strategies like marker-assisted selection.
Collapse
|