1
|
Chen H, Luo J, Zheng P, Zhang X, Zhang C, Li X, Wang M, Huang Y, Liu X, Jan M, Liu Y, Hu P, Tu J. Application of Cre-lox gene switch to limit the Cry expression in rice green tissues. Sci Rep 2017; 7:14505. [PMID: 29109405 PMCID: PMC5673937 DOI: 10.1038/s41598-017-14679-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 10/17/2017] [Indexed: 11/09/2022] Open
Abstract
The presence of genetically modified (GM) protein in the endosperm is important information for the public when considering the biological safety of transgenic rice. To limit the expression of GM proteins to rice green tissues, we developed a modified Cre-lox gene switch using two cassettes named KEY and LOCK. KEY contains a nuclear-localized Cre recombinase driven by the green-tissue-specific promoter rbcS. LOCK contains a Nos terminator (NosT), which is used to block the expression of the gene of interest (GOI), bounded by two loxP sites. When KEY and LOCK are pyramided into hybrid rice, a complete gene switch system is formed. The Cre recombinase from KEY excises loxP-NosT in LOCK and unlocks the GOI in green tissues but keeps it locked in the endosperm. This regulatory effect was demonstrated by eYFP and Bt expression assays. The presence of eYFP and Cre were confirmed in the leaf, sheath, stem, and glume but not in the root, anther or seed of the gene-switch-controlled eYFP hybrids. Meanwhile, gene switch-controlled Bt hybrid rice not only confined the expression of Bt protein to the green tissues but also showed high resistance to striped stem borers and leaffolders.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, China National Rice Research Institute. Ti-Yu-Chang Road No 359, Hangzhou, 310006, China
| | - Peng Zheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Xiaobo Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Cuicui Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Xinyuan Li
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Mugui Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yuqing Huang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Xuejiao Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Mehmood Jan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Yujun Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute. Ti-Yu-Chang Road No 359, Hangzhou, 310006, China.
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No 866, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Ko SS, Li MJ, Lin YJ, Hsing HX, Yang TT, Chen TK, Jhong CM, Ku MSB. Tightly Controlled Expression of bHLH142 Is Essential for Timely Tapetal Programmed Cell Death and Pollen Development in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1258. [PMID: 28769961 PMCID: PMC5513933 DOI: 10.3389/fpls.2017.01258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/03/2017] [Indexed: 05/24/2023]
Abstract
Male sterility is important for hybrid seed production. Pollen development is regulated by a complex network. We previously showed that knockout of bHLH142 in rice (Oryza sativa) causes pollen sterility by interrupting tapetal programmed cell death (PCD) and bHLH142 coordinates with TDR to modulate the expression of EAT1. In this study, we demonstrated that overexpression of bHLH142 (OE142) under the control of the ubiquitin promoter also leads to male sterility in rice by triggering the premature onset of PCD. Protein of bHLH142 was found to accumulate specifically in the OE142 anthers. Overexpression of bHLH142 induced early expression of several key regulatory transcription factors in pollen development. In particular, the upregulation of EAT1 at the early stage of pollen development promoted premature PCD in the OE142 anthers, while its downregulation at the late stage impaired pollen development by suppressing genes involved in pollen wall biosynthesis, ROS scavenging and PCD. Collectively, these events led to male sterility in OE142. Analyses of related mutants further revealed the hierarchy of the pollen development regulatory gene network. Thus, the findings of this study advance our understanding of the central role played by bHLH142 in the regulatory network leading to pollen development in rice and how overexpression of its expression affects pollen development. Exploitation of this novel functionality of bHLH142 may confer a big advantage to hybrid seed production.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Hong-Xian Hsing
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Ting-Ting Yang
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
- Agricultural Biotechnology Research Center, Academia SinicaTaipei, Taiwan
| | - Tien-Kuan Chen
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Chung-Min Jhong
- Academia Sinica Biotechnology Center in Southern TaiwanTainan, Taiwan
| | - Maurice Sun-Ben Ku
- Department of Bioagricultural Science, National Chiayi UniversityChiayi, Taiwan
- School of Biological Sciences, Washington State University, PullmanWA, United States
| |
Collapse
|
3
|
Liu X, Zhang C, Li X, Tu J. Pyramiding and evaluation of both a foreign Bacillus thuringiensis and a Lysine-rich protein gene in the elite indica rice 9311. BREEDING SCIENCE 2016; 66:591-598. [PMID: 27795684 PMCID: PMC5010305 DOI: 10.1270/jsbbs.16014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
Gene pyramiding is an efficient approach for the genetic improvement of multiple agronomic traits simultaneously. In this study, we pyramided two foreign genes, cry1Ac driven by the rice Actin I promoter, and lysine-rich protein (LRP), driven by the endosperm-specific GLUTELIN1 (GT1) promoter, into the elite indica cultivar 9311. These two genes were chosen in an attempt to enhance insect-resistance and Lysine (Lys) content. In the pyramided line, the foreign gene cry1Ac was efficiently expressed in the leaves and stems, and exhibited highly efficient resistance to striped stem borer (SSB, Chilo suppressalis Walker) in the laboratory and rice leaf folder (RLF, Cnaphalocrocis medinalis Guenee) in the field. Furthermore, the LRP gene was highly expressed in the endosperm and produced a remarkable increase of Lys content in the seeds of the pyramided line. The data from field trials demonstrated that most of the agronomic traits including yield were well maintained in the pyramided line compared to the parental control. These results strongly suggest that the foreign cry1Ac and LRP genes have remarkable application potential in rice, and the resultant pyramided line serves as an ideal bridge material for the improvement of insect-resistance and high Lys rice in the future.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University,
Yuhangtang Road 866, Hangzhou, 310058,
China
| | - Cuicui Zhang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University,
Yuhangtang Road 866, Hangzhou, 310058,
China
| | - Xiaogang Li
- Shanxi Rice Research Institute,
Dongta Road 356, Hanzhong, 723000,
China
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University,
Yuhangtang Road 866, Hangzhou, 310058,
China
| |
Collapse
|
4
|
Liu X, Zhang C, Wang X, Liu Q, Yuan D, Pan G, Sun SSM, Tu J. Development of high-lysine rice via endosperm-specific expression of a foreign LYSINE RICH PROTEIN gene. BMC PLANT BIOLOGY 2016; 16:147. [PMID: 27357959 PMCID: PMC4928333 DOI: 10.1186/s12870-016-0837-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lysine (Lys) is considered to be the first limiting essential amino acid in rice. Although there have been extensive efforts to improve the Lys content of rice through traditional breeding and genetic engineering, no satisfactory products have been achieved to date. RESULTS We expressed a LYSINE-RICH PROTEIN gene (LRP) from Psophocarpus tetragonolobus (L.) DC using an endosperm-specific GLUTELIN1 promoter (GT1) in Peiai64S (PA64S), an elite photoperiod-thermo sensitive male sterility (PTSMS) line. The expression of the foreign LRP protein was confirmed by Western blot analysis. The Lys level in the transgenic rice seeds increased more than 30 %, the total amount of other amino acids also increased compared to wild-type. Persistent investigation of amino acids in 3 generations showed that the Lys content was significantly increased in seeds of transgenic rice. Furthermore, Lys content in the hybrid of the transgenic plants also had an approximate 20 % increase compared to hybrid control. At the grain-filling stage, we monitored the transcript abundance of many genes encoding key enzymes involved in amino acid metabolism, and the results suggested that reduced amino acid catabolism led to the accumulation of amino acids in the transgenic plants. The genetically engineered rice showed unfavorable grain phenotypes compared to wild-type, however, its hybrid displayed little negative effects on grain. CONCLUSIONS Endosperm-specific expression of foreign LRP significantly increased the Lys content in the seeds of transgenic plant, and the the Lys increase was stably heritable with 3 generation investigation. The hybrid of the transgenic plants also showed significant increases of Lys content in the seeds. These results indicated that expression of LRP in rice seeds may have promising applications in improving Lys levels in rice.
Collapse
Affiliation(s)
- Xin Liu
- />Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Cuicui Zhang
- />Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Xiurong Wang
- />UGC-AoE Plant and Fungal Biotechnology Center, Department of Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiaoquan Liu
- />UGC-AoE Plant and Fungal Biotechnology Center, Department of Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Dingyang Yuan
- />UGC-AoE Plant and Fungal Biotechnology Center, Department of Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Pan
- />Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| | - Samuel S. M. Sun
- />UGC-AoE Plant and Fungal Biotechnology Center, Department of Biology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jumin Tu
- />Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 China
| |
Collapse
|