1
|
Gupta M, Manek G, Dombrowski K, Maiwall R. Newer developments in viral hepatitis: Looking beyond hepatotropic viruses. World J Meta-Anal 2021; 9:522-542. [DOI: 10.13105/wjma.v9.i6.522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/09/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis in the entirety of its clinical spectrum is vast and most discussion are often restricted to hepatotropic viral infections, including hepatitis virus (A to E). With the advent of more advanced diagnostic techniques, it has now become possible to diagnose patients with non-hepatotropic viral infection in patients with hepatitis. Majority of these viruses belong to the Herpes family, with characteristic feature of latency. With the increase in the rate of liver transplantation globally, especially for the indication of acute hepatitis, it becomes even more relevant to identify non hepatotropic viral infection as the primary hepatic insult. Immunosuppression post-transplant is an established cause of reactivation of a number of viral infections that could then indirectly cause hepatic injury. Antiviral agents may be utilized for treatment of most of these infections, although data supporting their role is derived primarily from case reports. There are no current guidelines to manage patients suspected to have viral hepatitis secondary to non-hepatotropic viral infection, a gap that needs to be addressed. In this review article, the authors analyze the common non hepatotropic viral infections contributing to viral hepatitis, with emphasis on recent advances on diagnosis, management and role of liver transplantation.
Collapse
Affiliation(s)
- Manasvi Gupta
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Gaurav Manek
- Department of Pulmonology and Critical Care, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Kaitlyn Dombrowski
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06030, United States
| | - Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi 110070, India
| |
Collapse
|
2
|
Nalwoga A, Roshan R, Moore K, Marshall V, Miley W, Labo N, Nakibuule M, Cose S, Rochford R, Newton R, Whitby D. Kaposi's sarcoma-associated herpesvirus T cell responses in HIV seronegative individuals from rural Uganda. Nat Commun 2021; 12:7323. [PMID: 34916520 PMCID: PMC8677732 DOI: 10.1038/s41467-021-27623-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
T cell responses to Kaposi's sarcoma-associated herpesvirus (KSHV) are likely essential in the control of KSHV infection and protection from associated disease, but remain poorly characterised. KSHV prevalence in rural Uganda is high at >90%. Here we investigate IFN- γ T cell responses to the KSHV proteome in HIV-negative individuals from a rural Ugandan population. We use an ex-vivo IFN- γ ELISpot assay with overlapping peptide pools spanning 83 KSHV open reading frames (ORF) on peripheral blood mononuclear cells (PBMC) from 116 individuals. KSHV-specific T cell IFN- γ responses are of low intensity and heterogeneous, with no evidence of immune dominance; by contrast, IFN- γ responses to Epstein-Barr virus, Cytomegalovirus and influenza peptides are frequent and intense. Individuals with KSHV DNA in PBMC have higher IFN- γ responses to ORF73 (p = 0.02) and lower responses to K8.1 (p = 0.004) when compared with those without KSHV DNA. In summary, we demonstrate low intensity, heterogeneous T cell responses to KSHV in immune-competent individuals.
Collapse
Affiliation(s)
- Angela Nalwoga
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda.
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kyle Moore
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene & Tropical Medicine, London, UK
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | | | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
3
|
Alonso-Álvarez S, Colado E, Moro-García MA, Alonso-Arias R. Cytomegalovirus in Haematological Tumours. Front Immunol 2021; 12:703256. [PMID: 34733270 PMCID: PMC8558552 DOI: 10.3389/fimmu.2021.703256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
The exquisite coupling between herpesvirus and human beings is the result of millions of years of relationship, coexistence, adaptation, and divergence. It is probably based on the ability to generate a latency that keeps viral activity at a very low level, thereby apparently minimising harm to its host. However, this evolutionary success disappears in immunosuppressed patients, especially in haematological patients. The relevance of infection and reactivation in haematological patients has been a matter of interest, although one fundamentally focused on reactivation in the post-allogeneic stem cell transplant (SCT) patient cohort. Newer transplant modalities have been progressively introduced in clinical settings, with successively more drugs being used to manipulate graft composition and functionality. In addition, new antiviral drugs are available to treat CMV infection. We review the immunological architecture that is key to a favourable outcome in this subset of patients. Less is known about the effects of herpesvirus in terms of mortality or disease progression in patients with other malignant haematological diseases who are treated with immuno-chemotherapy or new molecules, or in patients who receive autologous SCT. The absence of serious consequences in these groups has probably limited the motivation to deepen our knowledge of this aspect. However, the introduction of new therapeutic agents for haematological malignancies has led to a better understanding of how natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, and B lymphocytes interact, and of the role of CMV infection in the context of recently introduced drugs such as Bruton tyrosine kinase (BTK) inhibitors, phosphoinosytol-3-kinase inhibitors, anti-BCL2 drugs, and even CAR-T cells. We analyse the immunological basis and recommendations regarding these scenarios.
Collapse
Affiliation(s)
- Sara Alonso-Álvarez
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Enrique Colado
- Haematology and Haemotherapy Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Hematologic Malignancies, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Marco A Moro-García
- Laboratory Medicine Department, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Cardiac Pathology, Health Research Institute of the Principality of Asturias (ISPA), Oviedo, Spain.,Immunology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
4
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
5
|
Nigro G, Adler SP. High-Dose Cytomegalovirus (CMV) Hyperimmune Globulin and Maternal CMV DNAemia Independently Predict Infant Outcome in Pregnant Women With a Primary CMV Infection. Clin Infect Dis 2021; 71:1491-1498. [PMID: 31628849 DOI: 10.1093/cid/ciz1030] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND After primary maternal cytomegalovirus (CMV) infection during pregnancy, infants are at risk for disease. METHODS Factors predictive of infant outcome were analyzed in a database of 304 pregnant women with primary infection. These women were enrolled between 2010 and 2017 and delivered 281 infants, of whom 108 were CMV infected. Long term follow-up occurred for 173 uninfected and 106 infected infants at age 4 years (range, 1-8 years). One hundred fifty-seven women were treated with an average of 2 doses (range, 1-6 doses) of high-dose hyperimmune globulin (HIG: 200 mg/kg/infusion). We used a regression model to define predictors of fetal infection, symptoms at birth, and long-term sequelae; 31 covariates were tested. RESULTS Four factors predicted fetal infection: a 1.8-fold increase (30% vs 56%) in the rate of congenital infection without HIG (adjusted odds ratio [AOR], 5.2; P < .0001), a 1.8-fold increase (32% vs 56%) associated with maternal viral DNAemia prior to HIG administration (AOR, 3.0; P = .002), abnormal ultrasounds (AOR, 59; P = .0002), and diagnosis of maternal infection by seroconversion rather than avidity (AOR, 3.3; P = .007). Lack of HIG and abnormal ultrasounds also predicted symptoms (P = .001). Long-term sequelae were predicted by not receiving HIG (AOR, 13.2; P = .001), maternal infection in early gestation (odds ratio [OR], 0.9; P = .017), and abnormal ultrasounds (OR, 7.6; P < .003). Prevalence and copy/number of DNAemia declined after HIG. CONCLUSIONS Maternal viremia predicts fetal infection and neonatal outcome. This may help patient counseling. High-dose HIG may prevent fetal infection and disease and is associated with the resolution of DNAemia.
Collapse
Affiliation(s)
- Giovanni Nigro
- Association of Mother-Infant Cytomegalovirus Infection, Rome, Italy.,Pediatric Unit, University of L'Aquila, Italy
| | - Stuart P Adler
- Cytomegalovirus Research Foundation, Richmond, Virginia, USA
| | | |
Collapse
|
6
|
Lezcano Carduz VP, Alba NA, Almagro EG, Pernaute OS. Cytomegalovirus infection associated with severe intraocular inflammation in an HIV patient: a case report. Antivir Ther 2021; 25:341-344. [PMID: 33824246 DOI: 10.3851/imp3381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
This is a report of a case of severe intraocular inflammation associated with cytomegalovirus in an untreated HIV+ patient with a marked CD4+ T-cell depletion. The atypical presentation shown could confuse and delay the diagnosis. Early suspicion and appropriate treatment (ganciclovir, valganciclovir, HAART) increase the likelihood of a favourable outcome.
Collapse
Affiliation(s)
| | | | - Elena Guzmán Almagro
- Servicio de Oftalmología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Olga Sánchez Pernaute
- Servicio de Reumatología, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
7
|
Barnes S, Schilizzi O, Audsley KM, Newnes HV, Foley B. Deciphering the Immunological Phenomenon of Adaptive Natural Killer (NK) Cells and Cytomegalovirus (CMV). Int J Mol Sci 2020; 21:ijms21228864. [PMID: 33238550 PMCID: PMC7700325 DOI: 10.3390/ijms21228864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells play a significant and vital role in the first line of defense against infection through their ability to target cells without prior sensitization. They also contribute significantly to the activation and recruitment of both innate and adaptive immune cells through the production of a range of cytokines and chemokines. In the context of cytomegalovirus (CMV) infection, NK cells and CMV have co-evolved side by side to employ several mechanisms to evade one another. However, during this co-evolution the discovery of a subset of long-lived NK cells with enhanced effector potential, increased antibody-dependent responses and the potential to mediate immune memory has revolutionized the field of NK cell biology. The ability of a virus to imprint on the NK cell receptor repertoire resulting in the expansion of diverse, highly functional NK cells to this day remains a significant immunological phenomenon that only occurs in the context of CMV. Here we review our current understanding of the development of these NK cells, commonly referred to as adaptive NK cells and their current role in transplantation, infection, vaccination and cancer immunotherapy to decipher the complex role of CMV in dictating NK cell functional fate.
Collapse
Affiliation(s)
- Samantha Barnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ophelia Schilizzi
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Katherine M. Audsley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah V. Newnes
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Bree Foley
- Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia; (S.B.); (O.S.); (K.M.A.); (H.V.N.)
- Correspondence:
| |
Collapse
|
8
|
Sex-Differential Impact of Human Cytomegalovirus Infection on In Vitro Reactivity to Toll-Like Receptor 2, 4 and 7/8 Stimulation in Gambian Infants. Vaccines (Basel) 2020; 8:vaccines8030407. [PMID: 32707906 PMCID: PMC7564534 DOI: 10.3390/vaccines8030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection rates approach 100% by the first year of life in low-income countries. It is not known if this drives changes to innate immunity in early life and thereby altered immune reactivity to infections and vaccines. Given the panoply of sex differences in immunity, it is feasible that any immunological effects of HCMV would differ in males and females. We analysed ex vivo innate cytokine responses to a panel of toll-like receptor (TLR) ligands in 108 nine-month-old Gambian males and females participating in a vaccine trial. We found evidence that HCMV suppressed reactivity to TLR2 and TLR7/8 stimulation in females but not males. This is likely to contribute to sex differences in responses to infections and vaccines in early life and has implications for the development of TLR ligands as vaccine adjuvants. Development of an effective HCMV vaccine would be able to circumvent some of these potentially negative effects of HCMV infection in childhood.
Collapse
|
9
|
Fonseca S, Pereira V, Lau C, Teixeira MDA, Bini-Antunes M, Lima M. Human Peripheral Blood Gamma Delta T Cells: Report on a Series of Healthy Caucasian Portuguese Adults and Comprehensive Review of the Literature. Cells 2020; 9:cells9030729. [PMID: 32188103 PMCID: PMC7140678 DOI: 10.3390/cells9030729] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Gamma delta T cells (Tc) are divided according to the type of Vδ and Vγ chains they express, with two major γδ Tc subsets being recognized in humans: Vδ2Vγ9 and Vδ1. Despite many studies in pathological conditions, only a few have quantified the γδ Tc subsets in healthy adults, and a comprehensive review of the factors influencing its representation in the blood is missing. Here we quantified the total γδ Tc and the Vδ2/Vγ9 and Vδ1 Tc subsets in the blood from 30 healthy, Caucasian, Portuguese adults, we characterized their immunophenotype by 8-color flow cytometry, focusing in a few relevant Tc markers (CD3/TCR-γδ, CD5, CD8), and costimulatory (CD28), cytotoxic (CD16) and adhesion (CD56) molecules, and we examined the impacts of age and gender. Additionally, we reviewed the literature on the influences of race/ethnicity, age, gender, special periods of life, past infections, diet, medications and concomitant diseases on γδ Tc and their subsets. Given the multitude of factors influencing the γδ Tc repertoire and immunophenotype and the high variation observed, caution should be taken in interpreting “abnormal” γδ Tc values and repertoire deviations, and the clinical significance of small populations of “phenotypically abnormal” γδ Tc in the blood.
Collapse
Affiliation(s)
- Sónia Fonseca
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Vanessa Pereira
- Department of Clinical Pathology, Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/E); 4434-502 Vila Nova de Gaia, Portugal;
| | - Catarina Lau
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
| | - Marika Bini-Antunes
- Laboratory of Immunohematology and Blood Donors Unit, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001Porto, Portugal;
| | - Margarida Lima
- Laboratory of Cytometry, Unit for Hematology Diagnosis, Department of Hematology, Hospital de Santo António (HSA), Centro Hospitalar Universitário do Porto (CHUP), Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (UMIB/ICBAS/UP); 4099-001 Porto Porto, Portugal; (S.F.); (C.L.); (M.d.A.T.)
- Correspondence: ; Tel.: + 351-22-20-77-500
| |
Collapse
|
10
|
Maleki F, Sadigh ZA, Sadeghi F, Muhammadnejad A, Farahmand M, Parvin M, Shirkoohi R. Human cytomegalovirus infection in Iranian glioma patients correlates with aging and tumor aggressiveness. J Med Virol 2020; 92:1266-1276. [PMID: 31944314 DOI: 10.1002/jmv.25673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV), as a ubiquitous and opportunistic virus, is a matter for consideration in broad-spectrum diseases, specifically in immunocompromised individuals. In recent decades, many studies that have evaluated the role of HCMV in inflammation and malignancies, especially in high-grade gliomas, have reported inconsistent results. Thus, this study was conducted to analyze 97 primary gliomas for human CMV UL83 gene and protein through TaqMan real-time polymerase chain reaction and immunohistochemistry, respectively. The results were positive for the UL83 gene and pp65 protein in 71% and 24% of samples, respectively. The frequency of HCMV was significantly higher in glioblastomas than other glioma grades (P < .01 and P < .05 for the UL83 gene and protein, respectively). In addition, the association between the prevalence of HCMV and aging strengthened the virus reactivation hypothesis in gliomas. In conclusion, a high frequency of HCMV infection was found in gliomas that correlated with tumor aggressiveness and age. This study recommends a thorough investigation to determine HCMV infection in gliomas to improve the existing knowledge of its role in glial tumors, its prognostic value, and possible efficient antiviral target therapy.
Collapse
Affiliation(s)
- Faezeh Maleki
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Zohreh-Azita Sadigh
- Human Viral Vaccine Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Alborz Province, Iran
| | - Farzin Sadeghi
- Department of Microbiology, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ahad Muhammadnejad
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Mahmoud Parvin
- Department of Pathology, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Tehran Province, Iran
| | - Reza Shirkoohi
- Department of Molecular Genetics, Cancer Biology Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.,Department of Molecular Genetics, Cancer Research Center, Cancer Institute of Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chen D, Zhao R, Cao W, Zhou W, Jiang Y, Zhang S, Chen Y, Fei G, Li J, Qian J. Clinical characteristics of cytomegalovirus gastritis: A retrospective study from a tertiary medical center. Medicine (Baltimore) 2020; 99:e18927. [PMID: 32000406 PMCID: PMC7004595 DOI: 10.1097/md.0000000000018927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytomegalovirus (CMV) gastritis is a rare opportunistic infection with diverse clinical manifestations. Our study aimed to investigate the clinical features of Chinese patients with CMV gastritis.Six inpatients diagnosed with CMV gastritis were retrospectively enrolled, based on the finding of inclusion bodies in routine hematoxylin and eosin staining or positive anti-CMV monoclonal antibodies under immunohistochemistry in the gastric biopsy. Data, including demographics, diagnostic measurements, and medications, were collected.Abdominal pain was the most frequently reported symptom, occurring in 4 patients. Five patients were immunocompromised with associated underlying diseases, and 3 patients had decreased leukocyte differentiation antigen 4 positive (CD4) T lymphocyte counts. Only 3 patients had either positive cytomegalovirus (CMV)-immunoglobulin (Ig) M or increased copies of CMV-DNA peripherally. All patients had gastric lesions in the antrum of the stomach, including ulcers or erosions observed by gastroscopy. All patients received ganciclovir by intravenous injection (IV) as the first line anti-CMV therapy, and attained complete (4) or partial remission (2) during the follow-up.CMV gastritis should be taken into consideration in patients with immunocompromised status who have abdominal pain, nausea, or vomiting. Gastroscopy and necessary biopsy are the major diagnostic methods for CMV gastritis. Early diagnosis leads to a better prognosis for these patients.
Collapse
Affiliation(s)
| | | | - Wei Cao
- Department of Infectious Diseases
| | | | | | - Shangzhu Zhang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Ji Li
- Department of Gastroenterology
| | | |
Collapse
|
12
|
Alston CI, Dix RD. SOCS and Herpesviruses, With Emphasis on Cytomegalovirus Retinitis. Front Immunol 2019; 10:732. [PMID: 31031749 PMCID: PMC6470272 DOI: 10.3389/fimmu.2019.00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/19/2019] [Indexed: 01/08/2023] Open
Abstract
Suppressor of cytokine signaling (SOCS) proteins provide selective negative feedback to prevent pathogeneses caused by overstimulation of the immune system. Of the eight known SOCS proteins, SOCS1 and SOCS3 are the best studied, and systemic deletion of either gene causes early lethality in mice. Many viruses, including herpesviruses such as herpes simplex virus and cytomegalovirus, can manipulate expression of these host proteins, with overstimulation of SOCS1 and/or SOCS3 putatively facilitating viral evasion of immune surveillance, and SOCS suppression generally exacerbating immunopathogenesis. This is particularly poignant within the eye, which contains a diverse assortment of specialized cell types working together in a tightly controlled microenvironment of immune privilege. When the immune privilege of the ocular compartment fails, inflammation causing severe immunopathogenesis and permanent, sight-threatening damage may occur, as in the case of AIDS-related human cytomegalovirus (HCMV) retinitis. Herein we review how SOCS1 and SOCS3 impact the virologic, immunologic, and/or pathologic outcomes of herpesvirus infection with particular emphasis on retinitis caused by HCMV or its mouse model experimental counterpart, murine cytomegalovirus (MCMV). The accumulated data suggests that SOCS1 and/or SOCS3 can differentially affect the severity of viral diseases in a highly cell-type-specific manner, reflecting the diversity and complexity of herpesvirus infection and the ocular compartment.
Collapse
Affiliation(s)
- Christine I Alston
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, GA, United States.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Elder E, Krishna B, Williamson J, Aslam Y, Farahi N, Wood A, Romashova V, Roche K, Murphy E, Chilvers E, Lehner PJ, Sinclair J, Poole E. Monocytes Latently Infected with Human Cytomegalovirus Evade Neutrophil Killing. iScience 2019; 12:13-26. [PMID: 30677738 PMCID: PMC6352302 DOI: 10.1016/j.isci.2019.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/13/2018] [Accepted: 01/03/2019] [Indexed: 12/25/2022] Open
Abstract
One site of latency of human cytomegalovirus (HCMV) in vivo is in undifferentiated cells of the myeloid lineage. Although latently infected cells are known to evade host T cell responses by suppression of T cell effector functions, it is not known if they must also evade surveillance by other host immune cells. Here we show that cells latently infected with HCMV can, indeed, be killed by host neutrophils but only in a serum-dependent manner. Specifically, antibodies to the viral latency-associated US28 protein mediate neutrophil killing of latently infected cells. To address this mechanistically, a full proteomic screen was carried out on latently infected monocytes. This showed that latent infection downregulates the neutrophil chemoattractants S100A8/A9, thus suppressing neutrophil recruitment to latently infected cells. The ability of latently infected cells to inhibit neutrophil recruitment represents an immune evasion strategy of this persistent human pathogen, helping to prevent clearance of the latent viral reservoir.
Collapse
Affiliation(s)
- Elizabeth Elder
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Benjamin Krishna
- Genomic Medicine Institute, Lerner Research Institute, 9620 Carnegie Avenue, Cleveland, OH, USA
| | - James Williamson
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Yusuf Aslam
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Neda Farahi
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Alexander Wood
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Veronika Romashova
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Kate Roche
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Eain Murphy
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Edwin Chilvers
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| | - Emma Poole
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK.
| |
Collapse
|
14
|
Campos CF, Leite L, Pereira P, Vaz CP, Branca R, Campilho F, Freitas F, Ligeiro D, Marques A, Torrado E, Silvestre R, Lacerda JF, Campos A, Cunha C, Carvalho A. PTX3 Polymorphisms Influence Cytomegalovirus Reactivation After Stem-Cell Transplantation. Front Immunol 2019; 10:88. [PMID: 30766534 PMCID: PMC6365436 DOI: 10.3389/fimmu.2019.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Background: Reactivation of latent human cytomegalovirus (CMV) in patients undergoing allogeneic stem-cell transplantation (HSCT) predisposes to several clinical complications and is therefore a major cause of morbidity and mortality. Although pentraxin-3 (PTX3) has been previously described to bind both human and murine CMV and mediate several host antiviral mechanisms, whether genetic variation in the PTX3 locus influences the risk of CMV infection is currently unknown. Methods: To dissect the contribution of genetic variation within PTX3 to the development of CMV infection, we analyzed described loss-of-function variants at the PTX3 locus in 394 recipients of HSCT and their corresponding donors and assessed the associated risk of CMV reactivation. Results: We report that the donor, but not recipient, h2/h2 haplotype in PTX3 increased the risk of CMV reactivation after 24 months following transplantation, with a significant effect on survival. Among recipients with h2/h2 donors, CMV seropositive patients as well as those receiving grafts from unrelated donors, regardless of the CMV serostatus, were more prone to develop viral reactivation after transplantation. Most importantly, the h2/h2 haplotype was demonstrated to display an influence toward risk of CMV reactivation comparable to that conferred by the unrelated status of the donor alone. Conclusions: Our findings demonstrate the important contribution of genetic variation in donor PTX3 to the risk of CMV reactivation in patients undergoing HSCT, highlighting a promising prognostic value of donor PTX3 to predict risk of CMV reactivation in this clinical setting.
Collapse
Affiliation(s)
- Cláudia F Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Leite
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Paulo Pereira
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Carlos Pinho Vaz
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Rosa Branca
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Fernando Campilho
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Fátima Freitas
- Instituto Português do Sangue e Transplantação, IP, Porto, Portugal
| | - Dário Ligeiro
- Instituto Português do Sangue e Transplantação, IP, Lisbon, Portugal
| | - António Marques
- Serviço de Imuno-Hemoterapia, Hospital de Braga, Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Lacerda
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisbon, Portugal.,Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisbon, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
15
|
Schaenman J, Liao D, Phonphok K, Bunnapradist S, Karlamangla A. Predictors of Early and Late Mortality in Older Kidney Transplant Recipients. Transplant Proc 2019; 51:684-691. [PMID: 30979451 DOI: 10.1016/j.transproceed.2019.01.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Older kidney patients with chronic kidney disease benefit significantly from kidney transplantation. However, these older transplant recipients have greater mortality after transplantation than younger transplant recipients. Understanding the impact of comorbidities on post-transplant mortality can improve risk stratification and patient selection. METHODS A single-center analysis of 3105 kidney transplant recipients was performed over a 12-year period. Comorbidities associated with death were evaluated in older and younger transplant recipients. RESULTS The 2 most important factors associated with increased mortality in the first 100 days after transplant were recipient age ≥60 and receipt of deceased donor organs (adjusted odds ratios, 3.29 and 5.80, respectively), with no statistically significant impact of recipient comorbidities. In the later post-transplant period (after the first 100 days), recipient age ≥60 and receipt of deceased donor organs (adjusted hazard ratios [HR] of 2.14 and 2.29, respectively) remained predictors of mortality. We also found that donor age ≥60 and the recipient having cardiovascular disease and diabetes were independent predictors of increased mortality. There was a statistically significant interaction between diabetes and heart disease and recipient age ≥60, with a lesser impact on late mortality in older patients compared to younger patients. CONCLUSIONS This analysis suggests that comorbidities have a larger impact later after transplantation, with less effect on older recipients. These observations suggest that certain comorbid conditions should be evaluated differently in older patients compared to younger ones.
Collapse
Affiliation(s)
- J Schaenman
- Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA.
| | - D Liao
- Division of Geriatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - K Phonphok
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA; Division of Nephrology, Department of Medicine, Rajavithi Hospital, Bangkok, Thailand
| | - S Bunnapradist
- Division of Nephrology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - A Karlamangla
- Division of Geriatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|
16
|
Chanouzas D, Small A, Borrows R, Ball S. Assessment of the T-SPOT.CMV interferon-γ release assay in renal transplant recipients: A single center cohort study. PLoS One 2018; 13:e0193968. [PMID: 29558479 PMCID: PMC5860728 DOI: 10.1371/journal.pone.0193968] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022] Open
Abstract
Background The measurement of CMV specific cellular immunity in organ transplant recipients could contribute additional acuity to serology based, CMV infection risk stratification, facilitating optimisation of immunosuppression and anti-viral prophylaxis. Methods A pilot study of renal transplant recipient (RTR’s) responses in the T-SPOT.CMV ELISPOT based assay. 108 RTR’s were recruited 3 months post-transplantation, immediately prior to the cessation of stratified anti-viral prophylaxis, used in recipients from seropositive donors. RTR’s were monitored for CMV viremia and disease. Cellular responses to peptides derived from CMV IE1 and pp65 were measured, using the T-SPOT.CMV assay. Results At recruitment, no CMV specific cellular immunity was detected by T-SPOT.CMV in CMV seronegative recipients (IE1 ≤ 1spot / 2.5x105 PBMC’s; pp65 ≤ 3 spots / 2.5x105 PBMC’s). At recruitment, CMV sero-positive recipients who made a robust response to both IE1 (>25 spots / 2.5x105 PBMC’s) and pp65 (>50 spots / 2.5x105 PBMC’s), were less likely to develop high level viremia than those who responded to one or neither antigen (0/28 vs 5/25; p<0.02). Conclusions In CMV seronegative RTR’s, CMV specific cellular immunity measured by T-SPOT.CMV was not detected prior to cessation of anti-viral prophylaxis. This differs from recent reports of CMV specific cellular immunity in a proportion of CMV seronegative RTR’s, associated with protection from CMV infection. In seropositive RTR’s, a dual response to IE1 and pp65 at recruitment, was associated with protection from subsequent viremia. This suggests that assessing the diversity of response to CMV antigens, may enhance risk stratification in this group.
Collapse
Affiliation(s)
- Dimitrios Chanouzas
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alexander Small
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Richard Borrows
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Simon Ball
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Translational Medicine, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Roshan R, Labo N, Trivett M, Miley W, Marshall V, Coren L, Cornejo Castro EM, Perez H, Holdridge B, Davis E, Matus-Nicodemos R, Ayala VI, Sowder R, Wyvill KM, Aleman K, Fennessey C, Lifson J, Polizzotto MN, Douek D, Keele B, Uldrick TS, Yarchoan R, Ohlen C, Ott D, Whitby D. T-cell responses to KSHV infection: a systematic approach. Oncotarget 2017; 8:109402-109416. [PMID: 29312617 PMCID: PMC5752530 DOI: 10.18632/oncotarget.22683] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/05/2017] [Indexed: 01/14/2023] Open
Abstract
Prior studies of T-cell responses to KSHV have included relatively few participants and focused on relatively few KSHV antigens. To provide a more comprehensive analysis, we investigated T-cell responses to the whole KSHV proteome using IFN-γ ELISpot. Using ∼7,500 overlapping 15mer peptides we generated one to three peptide pools for each of the 82 KSHV ORFs. IFN-γ ELISpot analysis of PBMCs from 19 patients with a history of KSHV-associated disease and 24 healthy donors (11 KSHV seropositive) detected widely varied responses. Fifty six of the 82 ORFs were recognized by at least one individual but there was little overlap between participants. Responses to at least one ORF pool were observed in all 19 patients and in 7 seropositive donors. Four seropositive donors and 10 seronegative donors had no detectable responses while 3 seronegative donors had weak responses to one ORF. Patients recognised more ORFs than the donors (p=0.04) but the response intensity (spot forming units: SFU per million cells) was similar in the two groups. In four of the responding donors, individual peptides eliciting the predominant responses were identified: three donors responded to only one peptide per ORF, while one recognized five. Using intracellular cytokine staining in four participant samples, we detected peptide-induced IFN-γ, MIP1-β, and TNF-α as well as CD107a degranulation, consistent with multifunctional effector responses in CD8+ and CD4+ T cells. Sequence analysis of TCRs present in peptide specific T-cell clones generated from two participants showed both mono- and multi-clonotypic responses. Finally, we molecularly cloned the KSHV specific TCRs and incorporated the sequences into retroviral vectors to transfer the specificities to fresh donor cells for additional studies. This study suggests that KSHV infected individuals respond to diverse KSHV antigens, consistent with a lack of shared immunodominance and establishes useful tools to facilitate KSHV immunology studies.
Collapse
Affiliation(s)
- Romin Roshan
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nazzarena Labo
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Matthew Trivett
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wendell Miley
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vickie Marshall
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lori Coren
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Elena M. Cornejo Castro
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hannah Perez
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Benjamin Holdridge
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Eliza Davis
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rodrigo Matus-Nicodemos
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Victor I. Ayala
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raymond Sowder
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathleen M. Wyvill
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Karen Aleman
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Christine Fennessey
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jeffrey Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mark N. Polizzotto
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Daniel Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
| | - Brandon Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas S. Uldrick
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, National Cancer Institute, Bethesda, MD, USA
| | - Claes Ohlen
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - David Ott
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Denise Whitby
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
18
|
Zieliński M, Tarasewicz A, Zielińska H, Jankowska M, Moszkowska G, Dębska-Ślizień A, Rutkowski B, Trzonkowski P. Impact of donor and recipient human cytomegalovirus status on kidney transplantation. Int Immunol 2017; 29:541-549. [DOI: 10.1093/intimm/dxx062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/02/2017] [Indexed: 12/28/2022] Open
|
19
|
Nigro G. Hyperimmune globulin in pregnancy for the prevention of congenital cytomegalovirus disease. Expert Rev Anti Infect Ther 2017; 15:977-986. [PMID: 29072089 DOI: 10.1080/14787210.2017.1398081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) is the most common and serious cause of congenital infections in developed countries since it is capable of infecting the fetus after both primary and recurrent maternal infection, and can be spread for years by infected children. Areas covered: Animal and human pregnancy studies about the prevention of congenital CMV infection and disease by CMV-specific hyperimmune globulin (HIG). Commercial HIG is manufactured from the plasma of selected donors with high anti-CMV antibody avidity and titers. Expert commentary: Currently available experimental and clinical studies and case reports support the possible effectiveness and safety of HIG infusions in pregnancy for the prevention of congenital CMV disease. The knowledge about the potential efficacy of preventive or therapeutic HIG administration should be enlarged by multi-center randomized studies, which may be favored by the implementation of CMV screening. Meanwhile, if ultrasound examinations show signs of fetal injury, or CMV is detected in the amniotic fluid, the patients should be advised about the possible option of HIG therapy.
Collapse
Affiliation(s)
- Giovanni Nigro
- a Pediatric School , University of L'Aquila , L'Aquila , Italy.,b Non-profit Onlus CMV Association Mother to Infant Cytomegalovirus Infection (AMICI) , Rome , Italy
| |
Collapse
|
20
|
Almishaal AA, Mathur PD, Hillas E, Chen L, Zhang A, Yang J, Wang Y, Yokoyama WM, Firpo MA, Park AH. Natural killer cells attenuate cytomegalovirus-induced hearing loss in mice. PLoS Pathog 2017; 13:e1006599. [PMID: 28859161 PMCID: PMC5597263 DOI: 10.1371/journal.ppat.1006599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 09/13/2017] [Accepted: 08/22/2017] [Indexed: 11/25/2022] Open
Abstract
Congenital cytomegalovirus (CMV) infection is the most common non-hereditary cause of sensorineural hearing loss (SNHL) yet the mechanisms of hearing loss remain obscure. Natural Killer (NK) cells play a critical role in regulating murine CMV infection via NK cell recognition of the Ly49H cell surface receptor of the viral-encoded m157 ligand expressed at the infected cell surface. This Ly49H NK receptor/m157 ligand interaction has been found to mediate host resistance to CMV in the spleen, and lung, but is much less effective in the liver, so it is not known if this interaction is important in the context of SNHL. Using a murine model for CMV-induced labyrinthitis, we have demonstrated that the Ly49H/m157 interaction mediates host resistance in the temporal bone. BALB/c mice, which lack functional Ly49H, inoculated with mCMV at post-natal day 3 developed profound hearing loss and significant outer hair cell loss by 28 days of life. In contrast, C57BL/6 mice, competent for the Ly49H/m157 interaction, had minimal hearing loss and attenuated outer hair cell loss with the same mCMV dose. Administration of Ly49H blocking antibody or inoculation with a mCMV viral strain deleted for the m157 gene rendered the previously resistant C57BL/6 mouse strain susceptible to hearing loss to a similar extent as the BALB/c mouse strain indicating a direct role of the Ly49H/m157 interaction in mCMV-dependent hearing loss. Additionally, NK cell recruitment to sites of infection was evident in the temporal bone of inoculated susceptible mouse strains. These results demonstrate participation of NK cells in protection from CMV-induced labyrinthitis and SNHL in mice. Cytomegalovirus (CMV) transmission from an infected mother to her fetus is a leading cause of permanent hearing loss in children, but the contributing processes are not clear. In this report, we utilized a mouse model, which recapitulates many features of congenital CMV mediated childhood hearing loss, to demonstrate that natural killer cells (NK), a component of early host immune response to infection, play a critical protective role in CMV-induced hearing loss. Specifically, we determined that NK cells interact with CMV infected cells through binding of the NK cell receptor, Ly49H, with a virally-encoded protein, m157, expressed on the cell surface of CMV infected inner ear cells, to mediate the protective effect. Findings from this study provide insight into the host immune response during CMV-induced hearing loss in mice.
Collapse
Affiliation(s)
- Ali A. Almishaal
- Department of Communication Sciences and Disorders, University of Utah College of Health, Salt Lake City, Utah, United States of America
| | - Pranav D. Mathur
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Elaine Hillas
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Liting Chen
- Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Anne Zhang
- Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Yong Wang
- Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Wayne M. Yokoyama
- Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew A. Firpo
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| | - Albert H. Park
- Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
21
|
Impact of Antibodies and Strain Polymorphisms on Cytomegalovirus Entry and Spread in Fibroblasts and Epithelial Cells. J Virol 2017; 91:JVI.01650-16. [PMID: 28381568 DOI: 10.1128/jvi.01650-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cytomegalovirus (CMV) entry into fibroblasts differs from entry into epithelial cells. CMV also spreads cell to cell and can induce syncytia. To gain insights into these processes, 27 antibodies targeting epitopes in CMV virion glycoprotein complexes, including glycoprotein B (gB), gH/gL, and the pentamer, were evaluated for their effects on viral entry and spread. No antibodies inhibited CMV spread in fibroblasts, including those with potent neutralizing activity against fibroblast entry, while all antibodies that neutralized epithelial cell entry also inhibited spread in epithelial cells and a correlation existed between the potencies of these two activities. This suggests that exposure of virions to the cell culture medium is obligatory during spread in epithelial cells but not in fibroblasts. In fibroblasts, the formation of syncytiumlike structures was impaired not only by antibodies to gB or gH/gL but also by antibodies to the pentamer, suggesting a potential role for the pentamer in promoting fibroblast fusion. Four antibodies reacted with linear epitopes near the N terminus of gH, exhibited strain specificity, and neutralized both epithelial cell and fibroblast entry. Five other antibodies recognized conformational epitopes in gH/gL and neutralized both fibroblast and epithelial cell entry. That these antibodies were strain specific for neutralizing fibroblast but not epithelial cell entry suggests that polymorphisms external to certain gH/gL epitopes may influence antibody neutralization during fibroblast but not epithelial cell entry. These findings may have implications for elucidating the mechanisms of CMV entry, spread, and antibody evasion and may assist in determining which antibodies may be most efficacious following active immunization or passive administration.IMPORTANCE Cytomegalovirus (CMV) is a significant cause of birth defects among newborns infected in utero and morbidity and mortality in transplant and AIDS patients. Monoclonal antibodies and vaccines targeting humoral responses are under development for prophylactic or therapeutic use. The findings reported here (i) confirm that cell-to-cell spread of CMV is sensitive to antibody inhibition in epithelial cells but not fibroblasts, (ii) demonstrate that antibodies can restrict the formation in vitro of syncytiumlike structures that resemble syncytial cytomegalic cells that are associated with CMV disease in vivo, and (iii) reveal that neutralization of CMV by antibodies to certain epitopes in gH or gH/gL is both strain and cell type dependent and can be governed by polymorphisms in sequences external to the epitopes. These findings serve to elucidate the mechanisms of CMV entry, spread, and antibody evasion and may have important implications for the development of CMV vaccines and immunotherapeutics.
Collapse
|
22
|
Saavedra D, Garcia B, Lage A. T Cell Subpopulations in Healthy Elderly and Lung Cancer Patients: Insights from Cuban Studies. Front Immunol 2017; 8:146. [PMID: 28261208 PMCID: PMC5306357 DOI: 10.3389/fimmu.2017.00146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 01/30/2017] [Indexed: 01/10/2023] Open
Abstract
The senescence of the immune system and the risk of cancer increase with aging. Age itself entails changes in the immune system, which are related to a decrease in thymic output of naïve lymphocytes, an accumulation of chronic antigenic load, notably chronic viral infections such as cytomegalovirus (CMV), and replicative senescence of lymphocytes. These changes could eventually contribute to cancer risk and affect the response to cancer treatment. However, several confounding factors make it difficult to draw a picture of causal relationships. Studies in diverse human populations could contribute to clarify these complex relationships. Here, we summarize the current knowledge about the senescence of the T cells, the relationship with CMV infection, cancer, and cancer treatment. We also review the results of a series of studies performed in Cuba whose population is characterized by the unusual combination of long life expectancy and high antigenic load, including high seroprevalence of CMV, typical of tropical countries. Although immunosenescence affects almost all components and functions of the immune response, its most salient feature is a decrease in numbers and proportions of naïve CD8+ T lymphocytes and an accretion of terminally differentiated CD8+ T lymphocytes. These features were confirmed by the Cuban studies, but interestingly a clear gender effect also appeared. Moreover, as aging is a global phenomenon, a fast increase in elderly with malignancies is expected; therefore, the evaluation of patient’s immune status would support the decision of treating them with immunotherapy and predict the efficacy of such treatments, thereby improving benefits for the patients.
Collapse
Affiliation(s)
- Danay Saavedra
- Clinical Immunology Department, Center of Molecular Immunology , Havana , Cuba
| | - Beatriz Garcia
- Clinical Immunology Department, Center of Molecular Immunology , Havana , Cuba
| | - Agustin Lage
- Clinical Immunology Department, Center of Molecular Immunology , Havana , Cuba
| |
Collapse
|
23
|
Primary Cytomegalovirus Infection in Seronegative Kidney Transplant Patients Is Associated with Protracted Cold Ischemic Time of Seropositive Donor Organs. PLoS One 2017; 12:e0171035. [PMID: 28129395 PMCID: PMC5271354 DOI: 10.1371/journal.pone.0171035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/14/2017] [Indexed: 12/29/2022] Open
Abstract
Human Cytomegalovirus (CMV) can lead to primary infection or reactivation in CMV-seronegative or -seropositive kidney transplant recipients, respectively. Complications comprise severe end-organ diseases and acute or chronic transplant rejection. Risk for CMV manifestation is stratified according to the CMV-IgG-serostatus, with donor+/recipient- (D+/R-) patients carrying the highest risk for CMV-replication. However, risk factors predisposing for primary infection in CMV-seronegative recipients are still not fully elucidated. Therefore, we monitored D+/R- high-risk patients undergoing kidney transplantation in combination with antiviral prophylaxis for the incidence of CMV-viremia for a median follow-up time of 784 days (156–1155 days). In this period, we analyzed the functional CMV-specific T cell response by intracellular cytokine staining and CMV-serology by ELISA. Only four of eight D+/R- patients developed clinically relevant CMV-viremia followed by seroconversion. Viremia triggered expansion of functional CMV-specific T cells correlating with protection against secondary CMV-reactivations. In contrast, all other patients remained permanently aviremic and showed no immunological correlate of infection after discontinuation of antiviral prophylaxis for up to three years. Comparing cold ischemic times (CIT) of viremic (median = 1020 min; 720–1080 min) and aviremic patients (median = 335 min; 120–660 min) revealed significantly (p = 0.0286) protracted CIT in patients with primary CMV-infection. Taken together, primary CMV-infection affects only a subgroup of D+/R- patients correlating with length of CIT. Therefore, patients with extended CIT should be thoroughly monitored for CMV-replication well beyond discontinuation of antiviral prophylaxis. In contrast, patients with short CIT remained permanently uninfected and might benefit from shorter prophylactic treatment.
Collapse
|
24
|
Freer G, Quaranta P, Pistello M. Evaluation of T Cell Immunity against Human Cytomegalovirus: Impact on Patient Management and Risk Assessment of Vertical Transmission. J Immunol Res 2016; 2016:9384813. [PMID: 28044143 PMCID: PMC5156801 DOI: 10.1155/2016/9384813] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/07/2016] [Accepted: 10/17/2016] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) is one of the most common infectious agents, infecting the general population at an early age without causing morbidity most of the time. However, on particular occasions, it may represent a serious risk, as active infection is associated with rejection and disease after solid organ transplantation or fetal transmission during pregnancy. Several methods for CMV diagnosis are available on the market, but because infection is so common, careful selection is needed to discriminate primary infection from reactivation. This review focuses on methods based on CMV-specific T cell reactivity to help monitor the consequences of CMV infection/reactivation in specific categories of patients. This review makes an attempt at discussing the pros and cons of the methods available.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center, Department of Translational Research, University of Pisa, Via del Brennero 2, 56127 Pisa, Italy
| | - Paola Quaranta
- Retrovirus Center, Department of Translational Research, University of Pisa, Via del Brennero 2, 56127 Pisa, Italy
| | - Mauro Pistello
- Retrovirus Center, Department of Translational Research, University of Pisa, Via del Brennero 2, 56127 Pisa, Italy
| |
Collapse
|
25
|
Jung J, Lee HJ, Kim SM, Kang YA, Lee YS, Chong YP, Sung H, Lee SO, Choi SH, Kim YS, Woo JH, Lee JH, Lee JH, Lee KH, Kim SH. Diagnostic usefulness of dynamic changes of CMV-specific T-cell responses in predicting CMV infections in HCT recipients. J Clin Virol 2016; 87:5-11. [PMID: 27984766 DOI: 10.1016/j.jcv.2016.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND CMV-specific cell mediated immune responses before and after hematopoietic stem cell transplantation (HCT) can categorize patients as at high or low risk of CMV development. OBJECTIVES We evaluated the usefulness of the CMV-specific T-cell ELISPOT assay for predicting the development of CMV infections after HCT in recipients with donor-positive and recipient-positive CMV serology (D+/R+ ). STUDY DESIGN CMV pp65 and IE1-specific ELISPOT assays were performed before HCT (D0), and at 30 (D30) and 90 (D90) days after HCT. RESULTS Of the 84 HCT recipients with D+/R+, 42 (50%) developed≥1 episode of CMV infection. Thirty-nine (64%) of 61 patients with Δ(D30-D0) pp65<42 developed CMV infections compared with 3 (14%) of 21 patients with Δ(D30-D0) pp65≥42 (P<0.001). Twenty-three (74%) of 31 patients with Δ(D30-D0) IE1<-4 developed CMV infections compared with 19 (37%) of 51 patients with Δ(D30-D0) IE1≥-4 (P=0.001). pp65 Δ(D30-D0) ≥42 had 93% sensitivity for ruling out subsequent CMV infection, and pp65 Δ(D30-D0)<42 followed by Δ(D30-D0) IE1<-4 had 100% specificity for ruling in the subsequent CMV infection. In addition, 10 (53%) of 19 patients with Δ(D90-D30) pp65<23 had relapsing CMV infections, compared with 3 (15%) of 20 patients with Δ(D90-D30) pp65≥23 (P=0.02). The sensitivity and specificity of Δ(D90-D30) pp65 were 77% (95% CI 50-92) and 65% (95% CI, 46-81). CONCLUSION Dynamic change in the CMV-specific ELISPOT assay before versus after HCT appears to predict the subsequent development of CMV infection and relapsing CMV infection.
Collapse
Affiliation(s)
- Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Ulsan University Hospital, Ulsan, Republic of Korea
| | - Hyun-Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun-Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Ah Kang
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Young-Shin Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jun Hee Woo
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung-Hee Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Je-Hwan Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoo-Hyung Lee
- Department of Hematology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Effros RB. The silent war of CMV in aging and HIV infection. Mech Ageing Dev 2016; 158:46-52. [PMID: 26404009 PMCID: PMC4808485 DOI: 10.1016/j.mad.2015.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/19/2022]
Abstract
Human cytomegalovirus (CMV), the prototypical β-herpervirus, is a widespread pathogen that establishes a lifelong latent infection in myeloid progenitor, and possibly other cells as well. Although immunocompetent individuals show mild or no symptoms despite periodic reactivation during myeloid cell differentiation, CMV is responsible for considerable morbidity and mortality in older adults and in persons chronically infected with HIV. Indeed, in these individuals, reactivation of CMV can cause serious complications. This review will focus of the effects of CMV during aging and HIV/AIDS, with particular attention to the cellular immunity and age-related pathology outcomes from this persistent infection. The impact of the long-term chronic exposure to CMV antigens on the expansion of CD8 T cells with features of replicative senescence will be highlighted.
Collapse
Affiliation(s)
- Rita B Effros
- Department of Pathology & Laboratory Medicine and UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
27
|
Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensser A, Lehner M, Holter W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front Microbiol 2016; 7:844. [PMID: 27375569 PMCID: PMC4899442 DOI: 10.3389/fmicb.2016.00844] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Children's University Hospital, Universitätsklinikum ErlangenErlangen, Germany
| | | | - Charlotte Brey
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Rene Geyeregger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum ErlangenErlangen, Germany; Department of Microbiology, The University of ChicagoChicago, IL, USA
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen Erlangen, Germany
| | - Manfred Lehner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Wolfgang Holter
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Department of Pediatrics, St. Anna Kinderspital, Medical University of ViennaVienna, Austria
| |
Collapse
|
28
|
Abstract
CD8 T lymphocytes are a major cell population of the adaptive immune system. A fundamental characteristic of the CD8 T lymphocyte pool is that it is composed of millions of clones; each with a unique T cell receptor capable of recognizing a limited number of peptides displayed at the cell surface bound to the grooves of major histocompatibility complex class I (MHC I) molecules. Naïve CD8 T lymphocytes are normally resting and circulate between the blood and secondary lymphoid organs in search of their cognate peptide–MHC complexes. During viral infections, bone marrow–derived professional antigen-presenting cells (pAPCs) in secondary lymphoid organs display viral peptides on their MHC I molecules. Specific CD8 T lymphocytes that recognize these peptide–MHC adducts become activated (primed), proliferate extensively, and develop into effectors capable of killing infected cells, identified by the presence at their surface of the pertinent viral peptide–MHC complexes. This article describes how the process of priming naïve CD8 T lymphocytes occurs.
Collapse
|
29
|
Wu SJ, Villarreal DO, Shedlock DJ, Weiner DB. Synthetic DNA approach to cytomegalovirus vaccine/immune therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:131-48. [PMID: 25757619 DOI: 10.1007/978-1-4939-2432-5_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is no licensed vaccine or cure for human cytomegalovirus (CMV), a ubiquitous β-herpes virus that infects 60-95 % of adults worldwide. Infection is a major cause of congenital abnormalities in newborns, contributes to development of childhood cerebral palsy and medulloblastoma, can result in severe disease in immunocompromised patients, and is a major impediment during successful organ transplantation. While CMV has been increasingly associated with numerous inflammatory diseases and cancers, only recently has it been correlated with increased risk of heart disease in adults, the number-one killer in the USA. These data, among others, suggest that subclinical CMV infection, or microinfection, in healthy individuals may play more of a causative role than an epiphenomenon in development of CMV-associated pathologies. Due to the myriad of diseases and complications associated with CMV, an efficacious vaccine would be highly valuable in reducing human morbidity and mortality as well as saving billions of dollars in annual health-care costs and disability adjusted life years (DALY) in the developing world. Therefore, the development of a safe efficacious CMV vaccine or immune therapy is paramount to the public health. This review aims to provide a brief overview on aspects of CMV infection and disease and focuses on current vaccine strategies. The use of new synthetic DNA vaccines might offer one such approach to this difficult problem.
Collapse
Affiliation(s)
- Stephan J Wu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 505A Stellar-Chance Laboratories Curie Blvd, Philadelphia, 19104, PA, USA
| | | | | | | |
Collapse
|
30
|
Miescher SM, Huber TM, Kühne M, Lieby P, Snydman DR, Vensak JL, Berger M. In vitro
evaluation of cytomegalovirus‐specific hyperimmune globulins vs. standard intravenous immunoglobulins. Vox Sang 2015; 109:71-8. [DOI: 10.1111/vox.12246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - D. R. Snydman
- Division of Geographic Medicine and Infectious Diseases Tufts Medical Center Tufts University School of Medicine Boston MA USA
| | | | | |
Collapse
|
31
|
Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 2014; 12:154-69. [PMID: 25263490 PMCID: PMC4654299 DOI: 10.1038/cmi.2014.85] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/15/2014] [Accepted: 08/16/2014] [Indexed: 12/30/2022] Open
Abstract
Cytomegaloviruses (CMVs), members of the herpesvirus family, have evolved a variety of mechanisms to evade the immune response to survive in infected hosts and to establish latent infection. They effectively hide infected cells from the effector mechanisms of adaptive immunity by eliminating cellular proteins (major histocompatibility Class I and Class II molecules) from the cell surface that display viral antigens to CD8 and CD4 T lymphocytes. CMVs also successfully escape recognition and elimination of infected cells by natural killer (NK) cells, effector cells of innate immunity, either by mimicking NK cell inhibitory ligands or by downregulating NK cell-activating ligands. To accomplish these immunoevasion functions, CMVs encode several proteins that function in the biosynthetic pathway by inhibiting the assembly and trafficking of cellular proteins that participate in immune recognition and thereby, block their appearance at the cell surface. However, elimination of these proteins from the cell surface can also be achieved by perturbation of their endosomal route and subsequent relocation from the cell surface into intracellular compartments. Namely, the physiological route of every cellular protein, including immune recognition molecules, is characterized by specific features that determine its residence time at the cell surface. In this review, we summarize the current understanding of endocytic trafficking of immune recognition molecules and perturbations of the endosomal system during infection with CMVs and other members of the herpesvirus family that contribute to their immune evasion mechanisms.
Collapse
|