1
|
Gil-Gil T, Valverde JR, Martínez JL, Corona F. In vivo genetic analysis of Pseudomonas aeruginosa carbon catabolic repression through the study of CrcZ pseudo-revertants shows that Crc-mediated metabolic robustness is needed for proficient bacterial virulence and antibiotic resistance. Microbiol Spectr 2023; 11:e0235023. [PMID: 37902380 PMCID: PMC10714802 DOI: 10.1128/spectrum.02350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
IIMPORTANCE Hfq and Crc regulate P. aeruginosa carbon catabolic repression at the post-transcriptional level. In vitro work has shown that Hfq binds the target RNAs and Crc stabilizes the complex. A third element in the regulation is the small RNA CrcZ, which sequesters the Crc-Hfq complex under no catabolic repression conditions, allowing the translation of the target mRNAs. A ΔcrcZ mutant was generated and presented fitness defects and alterations in its virulence potential and antibiotic resistance. Eight pseudo-revertants that present different degrees of fitness compensation were selected. Notably, although Hfq is the RNA binding protein, most mutations occurred in Crc. This indicates that Crc is strictly needed for P. aeruginosa efficient carbon catabolic repression in vivo. The compensatory mutations restore in a different degree the alterations in antibiotic susceptibility and virulence of the ΔcrcZ mutant, supporting that Crc plays a fundamental role linking P. aeruginosa metabolic robustness, virulence, and antibiotic resistance.
Collapse
|
2
|
Hernando-Amado S, Laborda P, Martínez JL. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat Commun 2023; 14:1723. [PMID: 36997518 PMCID: PMC10063638 DOI: 10.1038/s41467-023-37357-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.
Collapse
Affiliation(s)
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, 2100, Copenhagen, Denmark
| | | |
Collapse
|
3
|
Hernando-Amado S, López-Causapé C, Laborda P, Sanz-García F, Oliver A, Martínez JL. Rapid Phenotypic Convergence towards Collateral Sensitivity in Clinical Isolates of Pseudomonas aeruginosa Presenting Different Genomic Backgrounds. Microbiol Spectr 2023; 11:e0227622. [PMID: 36533961 PMCID: PMC9927454 DOI: 10.1128/spectrum.02276-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Collateral sensitivity (CS) is an evolutionary trade-off by which acquisition of resistance to an antibiotic leads to increased susceptibility to another. This Achilles' heel of antibiotic resistance could be exploited to design evolution-based strategies for treating bacterial infections. To date, most studies in the field have focused on the identification of CS patterns in model strains. However, one of the main requirements for the clinical application of this trade-off is that it must be robust and has to emerge in different genomic backgrounds, including preexisting drug-resistant isolates, since infections are frequently caused by pathogens already resistant to antibiotics. Here, we report the first analysis of CS robustness in clinical strains of Pseudomonas aeruginosa presenting different ab initio mutational resistomes. We identified a robust CS pattern associated with short-term evolution in the presence of ciprofloxacin of clinical P. aeruginosa isolates, including representatives of high-risk epidemic clones belonging to sequence type (ST) 111, ST175, and ST244. We observed the acquisition of different ciprofloxacin resistance mutations in strains presenting varied STs and different preexisting mutational resistomes. Importantly, despite these genetic differences, the use of ciprofloxacin led to a robust CS to aztreonam and tobramycin. In addition, we describe the possible application of this evolutionary trade-off to drive P. aeruginosa infections to extinction by using the combination of ciprofloxacin-tobramycin or ciprofloxacin-aztreonam. Our results support the notion that the identification of robust patterns of CS may establish the basis for developing evolution-informed treatment strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens. IMPORTANCE Collateral sensitivity (CS) is a trade-off of antibiotic resistance evolution that could be exploited to design strategies for treating bacterial infections. Clinical application of CS requires it to robustly emerge in different genomic backgrounds. In this study, we performed an analysis to identify robust patterns of CS associated with the use of ciprofloxacin in clinical isolates of P. aeruginosa presenting different mutational resistomes and including high-risk epidemic clones (ST111, ST175, and ST244). We demonstrate the robustness of CS to tobramycin and aztreonam and the potential application of this evolutionary observation to drive P. aeruginosa infections to extinction. Our results support the notion that the identification of robust CS patterns may establish the basis for developing evolutionary strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens.
Collapse
Affiliation(s)
| | - Carla López-Causapé
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | - Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | - Fernando Sanz-García
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, Zaragoza, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC, Palma de Mallorca, Spain
| | | |
Collapse
|
4
|
Amieva R, Gil-Gil T, Martínez JL, Alcalde-Rico M. The MexJK Multidrug Efflux Pump Is Not Involved in Acquired or Intrinsic Antibiotic Resistance in Pseudomonas aeruginosa, but Modulates the Bacterial Quorum Sensing Response. Int J Mol Sci 2022; 23:7492. [PMID: 35886841 PMCID: PMC9323910 DOI: 10.3390/ijms23147492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
Multidrug efflux pumps are critical elements in both intrinsic and acquired antibiotic resistance of bacterial populations. Consequently, most studies regarding these protein machineries focus on this specific phenotype. Nevertheless, different works show that efflux pumps participate in other aspects of bacterial physiology too. Herein, we study the Pseudomonas aeruginosa multidrug efflux pump MexJK. Previous studies, using model strains lacking MexAB-OprM and MexCD-OprJ efflux pumps, support that MexJK can extrude erythromycin, tetracycline, and triclosan. However, the results here reported indicate that this potential increased extrusion, in a mutant overexpressing mexJK, does not alter the antibiotics susceptibility in a wild-type genetic background where all intrinsic multidrug efflux pumps remain functional. Nevertheless, a clear impact on the quorum sensing (QS) response, mainly in the Pqs-dependent QS regulation network and in the expression of Pqs-regulated virulence factors, was observed linked to mexJK overexpression. The production of the siderophore pyoverdine strongly depended on the level of mexJK expression, suggesting that MexJK might participate in P. aeruginosa pyoverdine-dependent iron homeostasis. All in all, the results presented in the current article support that the functions of multidrug efflux pumps, as MexJK, go beyond antibiotic resistance and can modulate other relevant aspects of bacterial physiology.
Collapse
Affiliation(s)
- Rafael Amieva
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- SALUVET Group, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile
| |
Collapse
|
5
|
Circella E, Casalino G, Camarda A, Schiavone A, D'Amico F, Dimuccio MM, Pugliese N, Ceci E, Romito D, Bozzo G. <em>Pseudomonas fluorescens</em> group bacteria as responsible for chromatic alteration on rabbit carcasses. Possible hygienic implications. Ital J Food Saf 2022; 11:9998. [PMID: 35795461 PMCID: PMC9251874 DOI: 10.4081/ijfs.2022.9998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Bacteria belonging to the genus Pseudomonas are ubiquitous and characterized by a high adaptation capability to different environmental conditions and wide range of temperatures. They may colonize food, sometimes causing alteration. Quite recently, a blue pigmentation due to Pseudomonas fluorescens has been widely reported in mozzarella cheese. In this report, we describe a blue coloration occurred on rabbit meat stored in the refrigeration cell of a slaughterhouse. The alteration was observed after about 72 hours of storage at 4-6°C. Bacteriological analyses were performed, and a microorganism included in the Pseudomonas fluorescens group was identified. The experimental contamination was planned, using a bacterial suspension with 1×108 UFC/ml load to spread on rabbit carcasses. The blue pigmentation appeared after 24 hours of storage in a cell with the same conditions of temperature. The bacterium was reisolated and identified as responsible for the alteration on meat. These findings highlight the importance of considering the members of the genus Pseudomonas and, more specifically, of the P. fluorescens group when the microbiological quality of food is to be ascertained. In fact, even if these bacteria are not considered a public health problem, their presence should be monitored by food industry operators in self-control plans because they may cause alteration in food. In fact, any altered product should be withdrawn from the market in agreement with Regulation (EC) No 178/2002 of the European Parliament and of the Council.
Collapse
|
6
|
Laborda P, Martínez JL, Hernando‐Amado S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb Biotechnol 2022; 15:613-629. [PMID: 33960651 PMCID: PMC8867969 DOI: 10.1111/1751-7915.13817] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de BiotecnologíaCSICMadrid28049Spain
| | | | | |
Collapse
|
7
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22083982. [PMID: 33921535 PMCID: PMC8070244 DOI: 10.3390/ijms22083982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.
Collapse
|
8
|
Laborda P, Alcalde-Rico M, Chini A, Martínez JL, Hernando-Amado S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Environ Microbiol 2021; 23:7396-7411. [PMID: 33818002 DOI: 10.1111/1462-2920.15511] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022]
Abstract
Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain.,Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Valparaíso, Chile
| | - Andrea Chini
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | | |
Collapse
|
9
|
Feiler CG, Weiss MS, Blankenfeldt W. The hypothetical periplasmic protein PA1624 from Pseudomonas aeruginosa folds into a unique two-domain structure. Acta Crystallogr F Struct Biol Commun 2020; 76:609-615. [PMID: 33263573 PMCID: PMC7716261 DOI: 10.1107/s2053230x20014612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 12/02/2022] Open
Abstract
The crystal structure of the 268-residue periplasmic protein PA1624 from the opportunistic pathogen Pseudomonas aeruginosa PAO1 was determined to high resolution using the Se-SAD method for initial phasing. The protein was found to be monomeric and the structure consists of two domains, domains 1 and 2, comprising residues 24-184 and 185-268, respectively. The fold of these domains could not be predicted even using state-of-the-art prediction methods, and similarity searches revealed only a very distant homology to known structures, namely to Mog1p/PsbP-like and OmpA-like proteins for the N- and C-terminal domains, respectively. Since PA1624 is only present in an important human pathogen, its unique structure and periplasmic location render it a potential drug target. Consequently, the results presented here may open new avenues for the discovery and design of antibacterial drugs.
Collapse
Affiliation(s)
- Christian G. Feiler
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-389124 Braunschweig, Germany
| | - Manfred S. Weiss
- Macromolecular Crystallography (HZB-MX), Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-389124 Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| |
Collapse
|
10
|
The Concerted Action of Two B3-Like Prophage Genes Excludes Superinfecting Bacteriophages by Blocking DNA Entry into Pseudomonas aeruginosa. J Virol 2020; 94:JVI.00953-20. [PMID: 32461312 DOI: 10.1128/jvi.00953-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.
Collapse
|
11
|
Depke T, Thöming JG, Kordes A, Häussler S, Brönstrup M. Untargeted LC-MS Metabolomics Differentiates Between Virulent and Avirulent Clinical Strains of Pseudomonas aeruginosa. Biomolecules 2020; 10:biom10071041. [PMID: 32668735 PMCID: PMC7407980 DOI: 10.3390/biom10071041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is a facultative pathogen that can cause, inter alia, acute or chronic pneumonia in predisposed individuals. The gram-negative bacterium displays considerable genomic and phenotypic diversity that is also shaped by small molecule secondary metabolites. The discrimination of virulence phenotypes is highly relevant to the diagnosis and prognosis of P. aeruginosa infections. In order to discover small molecule metabolites that distinguish different virulence phenotypes of P. aeruginosa, 35 clinical strains were cultivated under standard conditions, characterized in terms of virulence and biofilm phenotype, and their metabolomes were investigated by untargeted liquid chromatography-mass spectrometry. The data was both mined for individual candidate markers as well as used to construct statistical models to infer the virulence phenotype from metabolomics data. We found that clinical strains that differed in their virulence and biofilm phenotype also had pronounced divergence in their metabolomes, as underlined by 332 features that were significantly differentially abundant with fold changes greater than 1.5 in both directions. Important virulence-associated secondary metabolites like rhamnolipids, alkyl quinolones or phenazines were found to be strongly upregulated in virulent strains. In contrast, we observed little change in primary metabolism. A hitherto novel cationic metabolite with a sum formula of C12H15N2 could be identified as a candidate biomarker. A random forest model was able to classify strains according to their virulence and biofilm phenotype with an area under the Receiver Operation Characteristics curve of 0.84. These findings demonstrate that untargeted metabolomics is a valuable tool to characterize P. aeruginosa virulence, and to explore interrelations between clinically important phenotypic traits and the bacterial metabolome.
Collapse
Affiliation(s)
- Tobias Depke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Janne Gesine Thöming
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Adrian Kordes
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
| | - Susanne Häussler
- Institute of Molecular Bacteriology, Twincore, Centre for Clinical and Experimental Infection Research, 30625 Hannover, Germany; (J.G.T.); (A.K.); (S.H.)
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Correspondence:
| |
Collapse
|
12
|
Circella E, Schiavone A, Barrasso R, Camarda A, Pugliese N, Bozzo G. Pseudomonas azotoformans Belonging to Pseudomonas fluorescens Group as Causative Agent of Blue Coloration in Carcasses of Slaughterhouse Rabbits. Animals (Basel) 2020; 10:ani10020256. [PMID: 32041142 PMCID: PMC7070765 DOI: 10.3390/ani10020256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Bacteria belonging to the genus Pseudomonas are well known for their ubiquitous distribution and their high adaptation capability, which allows them to survive in a wide range of temperatures and other environmental conditions. Therefore, they may colonize food, and a number of cases of food contamination due to Pseudomonas spp. have been reported. Among them, in recent years, blue pigmentation due to Pseudomonas fluorescens has been widely described in mozzarella cheese, insomuch that it was dubbed the “blue mozzarella” case. Here, we report on the contamination of rabbit meat due to a member of the P. fluorescens group that conferred blue coloration to the food matrix. Specifically, colored meat was observed in the refrigeration cell of two butcher shops which had originated from the same slaughterhouse. Bacteriological sampling was performed on pigmented rabbit carcasses as well as from the labeling gun, knives, and water from the slaughterhouse. The same kind of bacterial colony was observed to grow from carcasses, labeling gun, and water. The first identification, performed using a miniaturized biochemical test, revealed it belonged to the P. fluorescens group, and further analysis of the 16S ribosomal RNA gene led to definitive identification as Pseudomonas azotoformans. These findings highlight the importance of considering the members of the genus Pseudomonas and, more specifically, of the P. fluorescens group when the microbiological quality of food is to be ascertained. Abstract The study describes the finding of an abnormal blue-tinged color found on rabbit carcasses in the refrigeration cell of two butcher shops in Apulia Region. The carcasses were from an industrial rabbitry for production of meat with a regularly authorized slaughterhouse. Pseudomonas azotoformans, a microorganism included in Pseudomonasfluorescens group, was isolated from samples collected by the altered carcasses, showing the growth of uniform bacterial colonies with fluorescent pigmentation. The bacterium was also isolated from an additional water sample and from the labelling gun collected in the slaughterhouse, whilst the knives used for slaughtering resulted negative. Chromatic alteration was experimentally reproduced on new carcasses using a 108 cfu/mL bacterial suspension prepared with the isolated strain. Due to their resistance characteristics, members of P. fluorescens group are very difficult to eradicate once introduced into the production environment. Therefore, their presence, even if not considered a public health problem, should be monitored by food industry operators in self-control plans.
Collapse
|
13
|
Novel Inducers of the Expression of Multidrug Efflux Pumps That Trigger Pseudomonas aeruginosa Transient Antibiotic Resistance. Antimicrob Agents Chemother 2019; 63:AAC.01095-19. [PMID: 31501142 DOI: 10.1128/aac.01095-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
The study of the acquisition of antibiotic resistance (AR) has mainly focused on inherited processes, namely, mutations and acquisition of AR genes. However, inducible, noninheritable AR has received less attention, and most information in this field derives from the study of antibiotics as inducers of their associated resistance mechanisms. Less is known about nonantibiotic compounds or situations that can induce AR during infection. Multidrug resistance efflux pumps are a category of AR determinants characterized by the tight regulation of their expression. Their contribution to acquired AR relies in their overexpression. Here, we analyzed potential inducers of the expression of the chromosomally encoded Pseudomonas aeruginosa clinically relevant efflux pumps, MexCD-OprJ and MexAB-OprM. For this purpose, we developed a set of luxCDABE-based P. aeruginosa biosensor strains, which allows the high-throughput analysis of compounds able to modify the expression of these efflux pumps. Using these strains, we analyzed a set of 240 compounds present in Biolog phenotype microarrays. Several inducers of the expression of the genes that encode these efflux pumps were found. The study focused in dequalinium chloride, procaine, and atropine, compounds that can be found in clinical settings. Using real-time PCR, we confirmed that these compounds indeed induce the expression of the mexCD-oprJ operon. In addition, P. aeruginosa presents lower susceptibility to ciprofloxacin (a MexCD-OprJ substrate) when dequalinium chloride, procaine, or atropine are present. This study emphasizes the need to study compounds that can trigger transient AR during antibiotic treatment, a phenotype difficult to discover using classical susceptibility tests.
Collapse
|
14
|
Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrob Agents Chemother 2019; 63:AAC.00185-19. [PMID: 30858210 DOI: 10.1128/aac.00185-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
Collapse
|
15
|
Castañeda-Montes F, Avitia M, Sepúlveda-Robles O, Cruz-Sánchez V, Kameyama L, Guarneros G, Escalante A. Population structure of Pseudomonas aeruginosa through a MLST approach and antibiotic resistance profiling of a Mexican clinical collection. INFECTION GENETICS AND EVOLUTION 2018; 65:43-54. [DOI: 10.1016/j.meegid.2018.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
|
16
|
Sanz-García F, Hernando-Amado S, Martínez JL. Mutational Evolution of Pseudomonas aeruginosa Resistance to Ribosome-Targeting Antibiotics. Front Genet 2018; 9:451. [PMID: 30405685 PMCID: PMC6200844 DOI: 10.3389/fgene.2018.00451] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023] Open
Abstract
The present work examines the evolutionary trajectories of replicate Pseudomonas aeruginosa cultures in presence of the ribosome-targeting antibiotics tobramycin and tigecycline. It is known that large number of mutations across different genes - and therefore a large number of potential pathways - may be involved in resistance to any single antibiotic. Thus, evolution toward resistance might, to a large degree, rely on stochasticity, which might preclude the use of predictive strategies for fighting antibiotic resistance. However, the present results show that P. aeruginosa populations evolving in parallel in the presence of antibiotics (either tobramycin or tigecycline) follow a set of trajectories that present common elements. In addition, the pattern of resistance mutations involved include common elements for these two ribosome-targeting antimicrobials. This indicates that mutational evolution toward resistance (and perhaps other properties) is to a certain degree deterministic and, consequently, predictable. These findings are of interest, not just for P. aeruginosa, but in understanding the general rules involved in the evolution of antibiotic resistance also. In addition, the results indicate that bacteria can evolve toward higher levels of resistance to antibiotics against which they are considered to be intrinsically resistant, as tigecycline in the case of P. aeruginosa and that this may confer cross-resistance to other antibiotics of therapeutic value. Our results are particularly relevant in the case of patients under empiric treatment with tigecycline, which frequently suffer P. aeruginosa superinfections.
Collapse
Affiliation(s)
| | - Sara Hernando-Amado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José L. Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
17
|
Alves PM, Al-Badi E, Withycombe C, Jones PM, Purdy KJ, Maddocks SE. Interaction between Staphylococcus aureus and Pseudomonas aeruginosa is beneficial for colonisation and pathogenicity in a mixed biofilm. Pathog Dis 2018; 76:4803945. [DOI: 10.1093/femspd/fty003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
|
18
|
Ó Muimhneacháin E, Reen FJ, O'Gara F, McGlacken GP. Analogues ofPseudomonas aeruginosasignalling molecules to tackle infections. Org Biomol Chem 2018; 16:169-179. [DOI: 10.1039/c7ob02395b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of antibiotic resistance coupled with the lack of investment by pharmaceutical companies necessitates a new look at how we tackle bacterial infections.
Collapse
Affiliation(s)
- Eoin Ó Muimhneacháin
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| | - F. Jerry Reen
- School of Microbiology
- University College Cork
- Ireland
- BIOMERIT Research Centre
- School of Microbiology
| | - Fergal O'Gara
- BIOMERIT Research Centre
- School of Microbiology
- University College Cork
- Ireland
- School of Biomedical Sciences
| | - Gerard P. McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| |
Collapse
|
19
|
McVey AC, Medarametla P, Chee X, Bartlett S, Poso A, Spring DR, Rahman T, Welch M. Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa. Biochemistry 2017; 56:5539-5549. [PMID: 28985053 DOI: 10.1021/acs.biochem.7b00852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization because of the dwindling number of effective therapies available to treat infections. Over the past decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologues found in other clinically relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.
Collapse
Affiliation(s)
- Alyssa C McVey
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| | | | - Xavier Chee
- Department of Pharmacology, University of Cambridge , Cambridge CB2 1PD, U.K
| | - Sean Bartlett
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland , 70211 Kuopio, Finland.,Department of Internal Medicine VIII, University Hospital Tübingen , 72076 Tübingen, Germany
| | - David R Spring
- Department of Chemistry, University of Cambridge , Cambridge CB2 1EW, U.K
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge , Cambridge CB2 1PD, U.K
| | - Martin Welch
- Department of Biochemistry, University of Cambridge , Cambridge CB2 1QW, U.K
| |
Collapse
|
20
|
Alaidarous M, Alanazi M, Abdel-Hadi A. Isolation, Identification, and Antimicrobial Susceptibility of Bacteria Associated with Waterpipe Contaminants in Selected Area of Saudi Arabia. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8042603. [PMID: 28932746 PMCID: PMC5592408 DOI: 10.1155/2017/8042603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
This study highlights the level of microbial contamination of waterpipe components in selected area of Saudi Arabia and the resistance of selected bacteria to different antibiotics was determined. A series of biochemical tests, microscopic examination, and screening on Vitek 2 compact (bioMérieux Inc., USA) system were done to characterize the bacterial isolates. Out of 132 samples investigated, 7 mouthpiece samples and 48 water bowl samples showed positivity on culture. The percentage of contamination rate was higher in water bowl (69.69%) than in mouthpieces (10.6%) for all selected areas. A total of 55 bacterial isolates were identified which included Gram-negative (28) and Gram-positive (27) bacteria. Antimicrobial susceptibility data showed more resistance to bacteria isolated from water bowl than bacteria isolated from mouthpiece. In addition, one isolate which was confirmed as methicillin-resistant Staphylococcus aureus and Klebsiella pneumoniae was resistant to antibiotics which are commonly used to treat pneumonia. Water bowl of waterpipe instrument is significantly contaminated with different bacterial pathogens including multidrug-resistant and pneumonia causing bacteria, which are a real health concern among waterpipe smokers. The presented data could assist public health professionals to raise the concerns regarding cleaning practices of waterpipe components and highlights the risk posed among the waterpipe smokers.
Collapse
Affiliation(s)
- Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Riyadh, Saudi Arabia
| | - Meshal Alanazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Riyadh, Saudi Arabia
| | - Ahmed Abdel-Hadi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
|
22
|
Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles. mBio 2017; 8:mBio.02312-16. [PMID: 28223461 PMCID: PMC5358918 DOI: 10.1128/mbio.02312-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa. Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats. With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.
Collapse
|
23
|
Genomic analyses of multidrug resistant Pseudomonas aeruginosa PA1 resequenced by single-molecule real-time sequencing. Biosci Rep 2016; 36:BSR20160282. [PMID: 27765811 PMCID: PMC5293553 DOI: 10.1042/bsr20160282] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022] Open
Abstract
As a third-generation sequencing (TGS) method, single-molecule real-time (SMRT) technology provides long read length, and it is well suited for resequencing projects and de novo assembly. In the present study, Pseudomonas aeruginosa PA1 was characterized and resequenced using SMRT technology. PA1 was also subjected to genomic, comparative and pan-genomic analyses. The multidrug resistant strain PA1 possesses a 6,498,072 bp genome and a sequence type of ST-782. The genome of PA1 was also visualized, and the results revealed the details of general genome annotations, virulence factors, regulatory proteins (RPs), secretion system proteins, type II toxin–antitoxin (T–A) pairs and genomic islands. Whole genome comparison analysis suggested that PA1 exhibits similarity to other P. aeruginosa strains but differs in terms of horizontal gene transfer (HGT) regions, such as prophages and genomic islands. Phylogenetic analyses based on 16S rRNA sequences demonstrated that PA1 is closely related to PAO1, and P. aeruginosa strains can be divided into two main groups. The pan-genome of P. aeruginosa consists of a core genome of approximately 4,000 genes and an accessory genome of at least 6,600 genes. The present study presented a detailed, visualized and comparative analysis of the PA1 genome, to enhance our understanding of this notorious pathogen.
Collapse
|
24
|
Genomic and Transcriptional Mapping of PaMx41, Archetype of a New Lineage of Bacteriophages Infecting Pseudomonas aeruginosa. Appl Environ Microbiol 2016; 82:6541-6547. [PMID: 27590812 DOI: 10.1128/aem.01415-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Previously, a collection of virulent phages infecting Pseudomonas aeruginosa was isolated from open water reservoirs and residual waters. Here, we described the comparative genomics of a set of five related phages from the collection, the physical structure of the genome, the structural proteomics of the virion, and the transcriptional program of archetypal phage PaMx41. The phage genomes were closely associated with each other and with those of two other P. aeruginosa phages, 119X and PaP2, which were previously filed in the databases. Overall, the genomes were approximately 43 kb, harboring 53 conserved open reading frames (ORFs) and three short ORFs in indel regions and containing 45% GC content. The genome of PaMx41 was further characterized as a linear, terminally redundant DNA molecule. A total of 16 ORFs were associated with putative functions, including nucleic acid metabolism, morphogenesis, and lysis, and eight virion proteins were identified through mass spectrometry. However, the coding sequences without assigned functions represent 70% of the ORFs. The PaMx41 transcription program was organized in early, middle, and late expressed genomic modules, which correlated with regions containing functionally related genes. The high genomic conservation among these distantly isolated phages suggests that these viruses undergo selective pressure to remain unchanged. The 119X lineage represents a unique set of phages that corresponds to a novel phage group. The features recognized in the genomes and the broad host range of clinical strains suggest that these phages are candidates for therapy applications. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes stubborn nosocomial infections that are frequently resistant to multiple antibiotics. Bacterial viruses (bacteriophages or phages) represent a natural mechanism for pathogenic bacterial control. Here, a group of virulent phages, previously shown to infect a broad range of clinical P. aeruginosa strains, was characterized at the genomic and molecular levels. These phages belong to a unique and tightly related group. In addition, we conducted a transcriptional study of an archetypal phage of this group to characterize the role of many unknown coding sequences based on expression temporalities. These results contribute to our knowledge of 119X-like phages and, in general, provide information concerning P. aeruginosa podophage diversity and lytic cycles.
Collapse
|
25
|
Phage Therapy Is Effective in a Mouse Model of Bacterial Equine Keratitis. Appl Environ Microbiol 2016; 82:5332-9. [PMID: 27342558 DOI: 10.1128/aem.01166-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Bacterial keratitis of the horse is mainly caused by staphylococci, streptococci, and pseudomonads. Of these bacteria, Pseudomonas aeruginosa sometimes causes rapid corneal corruption and, in some cases, blindness. Antimicrobial resistance can make treatment very difficult. Therefore, new strategies to control bacterial infection are required. A bacteriophage (phage) is a virus that specifically infects and kills bacteria. Since phage often can lyse antibiotic-resistant bacteria because the killing mechanism is different, we examined the use of phage to treat horse bacterial keratitis. We isolated Myoviridae or Podoviridae phages, which together have a broad host range. They adsorb efficiently to host bacteria; more than 80% of the ΦR18 phage were adsorbed to host cells after 30 s. In our keratitis mouse model, the administration of phage within 3 h also could kill bacteria and suppress keratitis. A phage multiplicity of infection of 100 times the host bacterial number could kill host bacteria effectively. A cocktail of two phages suppressed bacteria in the keratitis model mouse. These data demonstrated that the phages in this study could completely prevent the keratitis caused by P. aeruginosa in a keratitis mouse model. Furthermore, these results suggest that phage may be a more effective prophylaxis for horse keratitis than the current preventive use of antibiotics. Such treatment may reduce the use of antibiotics and therefore antibiotic resistance. Further studies are required to assess phage therapy as a candidate for treatment of horse keratitis. IMPORTANCE Antibiotic-resistant bacteria are emerging all over the world. Bacteriophages have great potential for resolution of this problem. A bacteriophage, or phage, is a virus that infects bacteria specifically. As a novel therapeutic strategy against racehorse keratitis caused by Pseudomonas aeruginosa, we propose the application of phages for treatment. Phages isolated in this work had in vitro effectiveness for a broad range of P. aeruginosa strains. Indeed, a great reduction of bacterial proliferation was shown in phage therapy for mouse models of P. aeruginosa keratitis. Therefore, to reduce antibiotic usage, phage therapy should be investigated and developed further.
Collapse
|
26
|
Dynamics of Mutations during Development of Resistance by Pseudomonas aeruginosa against Five Antibiotics. Antimicrob Agents Chemother 2016; 60:4229-36. [PMID: 27139485 DOI: 10.1128/aac.00434-16] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes considerable morbidity and mortality, specifically during intensive care. Antibiotic-resistant variants of this organism are more difficult to treat and cause substantial extra costs compared to susceptible strains. In the laboratory, P. aeruginosa rapidly developed resistance to five medically relevant antibiotics upon exposure to stepwise increasing concentrations. At several time points during the acquisition of resistance, samples were taken for whole-genome sequencing. The increase in the MIC of ciprofloxacin was linked to specific mutations in gyrA, parC, and gyrB, appearing sequentially. In the case of tobramycin, mutations in fusA, HP02880, rplB, and capD were induced. The MICs of the beta-lactam compounds meropenem and ceftazidime and the combination of piperacillin and tazobactam correlated linearly with beta-lactamase activity but not always with individual mutations. The genes that were mutated during the development of beta-lactam resistance differed for each antibiotic. A quantitative relationship between the frequency of mutations and the increase in resistance could not be established for any of the antibiotics. When the adapted strains are grown in the absence of the antibiotic, some mutations remained and others were reversed, but this reversal did not necessarily lower the MIC. The increased MIC came at the cost of moderately reduced cellular functions or a somewhat lower growth rate. In all cases except ciprofloxacin, the increase in resistance seems to be the result of complex interactions among several cellular systems rather than individual mutations.
Collapse
|
27
|
Li Y, Wang Z, Liu X, Tang J, Peng B, Wei Y. X-ray Irradiated Vaccine Confers protection against Pneumonia caused by Pseudomonas aeruginosa. Sci Rep 2016; 6:18823. [PMID: 26879055 PMCID: PMC4754647 DOI: 10.1038/srep18823] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 11/24/2015] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium and one of the leading causes of nosocomial infection worldwide, however, no effective vaccine is currently available in the market. Here, we demonstrate that inactivation of the bacteria by X-ray irradiation inhibits its replication capability but retained antigenic expression functionally thus allowing its use as a potential vaccine. Mice immunized by this vaccine were challenged by the parental strain, the O-antigen-homologous strain PAO-1 (O2/O5) and heterologous strain PAO-6 (O6) in an acute pneumonia model. We further measured the protective effect of the vaccine, as well as host innate and cellular immunity responses. We found immunized mice could protect against both strains. Notably, the antiserum only had significant protective role against similar bacteria, while adoptive transfer of lymphocytes significantly controlled the spread of the virulent heterologous serogroup PAO-6 infection, and the protective role could be reversed by CD4 rather than CD8 antibody. We further revealed that vaccinated mice could rapidly recruit neutrophils to the airways early after intranasal challenge by PAO-6, and the irradiated vaccine was proved to be protective by the generated CD4(+) IL-17(+) Th17 cells. In conclusion, the generation of inactivated but metabolically active microbes is a promising strategy for safely vaccinating against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China.,State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Zhenling Wang
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Xiaoxiao Liu
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Jianying Tang
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| | - Bin Peng
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China.,Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuquan Wei
- State Key Labortary of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Cheng Du, China
| |
Collapse
|
28
|
Furusawa T, Iwano H, Higuchi H, Yokota H, Usui M, Iwasaki T, Tamura Y. Bacteriophage can lyse antibiotic-resistant Pseudomonas aeruginosa isolated from canine diseases. J Vet Med Sci 2016; 78:1035-8. [PMID: 26876365 PMCID: PMC4937139 DOI: 10.1292/jvms.15-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen frequently identified as the cause of diverse
infections or chronic disease. This microbe has natural resistance to several kinds of antibiotics, because of
the species’ outer membrane, efflux pumps and growth as a biofilm. This bacterium can acquire increased
resistance with specific point mutations. Bacteriophage (phage), however, can lyse these bacteria. Therefore,
in the present study, we assessed the host range of phages isolates and their ability to lyse
antibiotic-resistant P. aeruginosa. Present phages could lyse many strains of P.
aeruginosa (28/39), including strains with high resistance to fluoroquinolones (4/6). In
conclusion, application of phages for antibiotic-resistant bacteria is greatly effective. To avoid pervasive
antibiotic-resistant bacteria, further development of phage usage for disease treatment is required.
Collapse
Affiliation(s)
- Takaaki Furusawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, 582 Bunkyodai-Midorimachi Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Masoud-Landgraf L, Zarfel G, Kaschnigg T, Friedl S, Feierl G, Wagner-Eibel U, Eber E, Grisold AJ, Kittinger C. Analysis and Characterization of Staphylococcus aureus Small Colony Variants Isolated From Cystic Fibrosis Patients in Austria. Curr Microbiol 2016; 72:606-11. [PMID: 26821237 PMCID: PMC4828482 DOI: 10.1007/s00284-016-0994-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/15/2015] [Indexed: 01/07/2023]
Abstract
Cystic fibrosis (CF) is the most common hereditary lung disease in the Caucasian population, characterized by viscous bronchial secretion, consecutive defective mucociliary clearance, and unavoidable colonization with microorganisms. Besides Pseudomonas aeruginosa, Staphylococcus aureus is the most common bacterial species colonizing the CF respiratory tract. Under antibiotic pressure S. aureus is able to switch to small colony variants (SCV). These small colony variants can invade epithelial cells, overcome antibiotic therapy inside the cells and can be the starting point for extracellular recolonization. The aim of the present study was the isolation and characterization of S. aureus small colony variants from Austrian cystic fibrosis patients. Samples collected from 147 patients were screened for the presence of S. aureus wild-type and small colony variants. Antibiotic susceptibility testing and determination of the small colony variants causing auxotrophism were performed. Wild-type isolates were assigned to corresponding small colony variants with spa typing. In total, 17 different small colony variant isolates and 12 corresponding wild-type isolates were obtained. 13 isolates were determined thymidine auxotroph, 2 isolates were auxotroph for hemin, and none of the tested isolates was auxotroph for both, respectively. The presence of SCVs is directly related to a poor clinical outcome, therefore a monitoring of SCV prevalence is recommended. This study revealed rather low SCV ratios in CF patients compared to other countries.
Collapse
Affiliation(s)
- Lilian Masoud-Landgraf
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Tanja Kaschnigg
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Simone Friedl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Gebhard Feierl
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Ute Wagner-Eibel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Ernst Eber
- Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - Andrea J Grisold
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria
| | - Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010, Graz, Austria.
| |
Collapse
|
30
|
Qadri SM, Donkor DA, Bhakta V, Eltringham-Smith LJ, Dwivedi DJ, Moore JC, Pepler L, Ivetic N, Nazi I, Fox-Robichaud AE, Liaw PC, Sheffield WP. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin. J Cell Mol Med 2016; 20:710-20. [PMID: 26781477 PMCID: PMC5125577 DOI: 10.1111/jcmm.12778] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.
Collapse
Affiliation(s)
- Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | | | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jane C Moore
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Pepler
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nikola Ivetic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Smith EW, Zhang X, Behzadi C, Andrews LD, Cohen F, Chen Y. Structures of Pseudomonas aeruginosa LpxA Reveal the Basis for Its Substrate Selectivity. Biochemistry 2015; 54:5937-48. [PMID: 26352800 DOI: 10.1021/acs.biochem.5b00720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gram-negative bacteria, the first step of lipid A biosynthesis is catalyzed by UDP-N-acetylglucosamine acyltransferase (LpxA) through the transfer of a R-3-hydroxyacyl chain from the acyl carrier protein (ACP) to the 3-hydroxyl group of UDP-GlcNAc. Previous studies suggest that LpxA is a critical determinant of the acyl chain length found in lipid A, which varies among species of bacteria. In Escherichia coli and Leptospira interrogans, LpxA prefers to incorporate longer R-3-hydroxyacyl chains (C14 and C12, respectively), whereas in Pseudomonas aeruginosa, the enzyme is selective for R-3-hydroxydecanoyl, a 10-hydrocarbon long acyl chain. We now report three P. aeruginosa LpxA crystal structures: apo protein, substrate complex with UDP-GlcNAc, and product complex with UDP-3-O-(R-3-hydroxydecanoyl)-GlcNAc. A comparison between the apo form and complexes identifies key residues that position UDP-GlcNAc appropriately for catalysis and supports the role of catalytic His121 in activating the UDP-GlcNAc 3-hydroxyl group for nucleophilic attack during the reaction. The product-complex structure, for the first time, offers structural insights into how Met169 serves to constrain the length of the acyl chain and thus functions as the so-called hydrocarbon ruler. Furthermore, compared with ortholog LpxA structures, the purported oxyanion hole, formed by the backbone amide group of Gly139, displays a different conformation in P. aeruginosa LpxA, which suggests flexibility of this structural feature important for catalysis and the potential need for substrate-induced conformational change in catalysis. Taken together, the three structures provide valuable insights into P. aeruginosa LpxA catalysis and substrate specificity as well as templates for future inhibitor discovery.
Collapse
Affiliation(s)
- Emmanuel W Smith
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - XiuJun Zhang
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Cyrus Behzadi
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| | - Logan D Andrews
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Frederick Cohen
- ACHAOGEN Inc. , 7000 Shoreline Court, South San Francisco, California 94080, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, United States
| |
Collapse
|
32
|
Rumbaugh KP. Genomic complexity and plasticity ensure Pseudomonas success. FEMS Microbiol Lett 2015; 356:141-3. [PMID: 25060810 DOI: 10.1111/1574-6968.12517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Kendra P Rumbaugh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
33
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
34
|
Berg G, Erlacher A, Smalla K, Krause R. Vegetable microbiomes: is there a connection among opportunistic infections, human health and our 'gut feeling'? Microb Biotechnol 2014; 7:487-95. [PMID: 25186140 PMCID: PMC4265069 DOI: 10.1111/1751-7915.12159] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 12/17/2022] Open
Abstract
The highly diverse microbiomes of vegetables are reservoirs for opportunistic and emerging pathogens. In recent years, an increased consumption, larger scale production and more efficient distribution of vegetables together with an increased number of immunocompromised individuals resulted in an enhanced number of documented outbreaks of human infections associated with the consumption of vegetables. Here we discuss the occurrence of potential pathogens in vegetable microbiomes, the impact of farming and processing practices, and plant and human health issues. Based on these results, we discuss the question if vegetables can serve as a source of infection for immunocompromised individuals as well as possible solutions to avoid outbreaks. Moreover, the potentially positive aspects of the vegetables microbiome for the gut microbiota and human health are presented.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, 8010, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, 8010, Austria
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI)Braunschweig, 38104, Germany
| | - Robert Krause
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI)Braunschweig, 38104, Germany
| |
Collapse
|