1
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Schellekens H, Bravo FI, Suárez M, Mulero M, Muguerza B. Clock system disruption in male Fischer 344 rats fed cafeteria diet and administered sweet treats at different times: The zeitgeber role of grape seed flavanols. Biofactors 2025; 51:e70000. [PMID: 39832727 DOI: 10.1002/biof.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Current lifestyles include calorie-dense diets and late-night food intake, which can lead to circadian misalignment. Our group recently demonstrated that sweet treats before bedtime alter the clock system in healthy rats, increasing metabolic risk factors. Therefore, we aimed to assess the impact of the sweet treat consumption time on the clock system in rats fed a cafeteria diet (CAF). Moreover, since flavanols have demonstrated beneficial effects in metabolic disorders and clock gene modulation, we also investigated whether these phenolic compounds can restore the circadian disruption caused by these altered dietary patterns. For this, 64 Fisher rats were fed CAF for 9 weeks. In the last 4 weeks, animals were daily administered a low dose of sugar (160 mg/kg) as a sweet treat at 8 a.m. (ZT0) or 8 p.m. (ZT12). Two other groups received 25 mg/kg of grape seed flavanols in addition to sweet treats. Finally, the animals were sacrificed at different time points (9 a.m., 3 p.m., 9 p.m., and 3 a.m.). The results showed that metabolic and circadian disturbances by CAF may be influenced by the time of sugar administration, slightly reinforcing the alterations in diurnal rhythmicity of serum biochemical parameters, hormones, and hypothalamic genes with bedtime snacking. Flavanols improved metabolic health and restored the oscillation of biochemical parameters, hormones, and clock and appetite-signaling genes, showing greater effects at ZT12. These results highlight the importance of meal timing in influencing physiological and metabolic outcomes, even under calorie-dense diets. Moreover, they also suggest the zeitgeber role of flavanols, modulating the clock system and contributing to an improved metabolic profile under different feeding pattern conditions.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Raúl López-Fernández-Sobrino
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
| | - Harriët Schellekens
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Francisca Isabel Bravo
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Manuel Suárez
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Miquel Mulero
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
| | - Begoña Muguerza
- Departament de Bioquimica i Biotecnologia, Universitat Rovira i Virgili, Nutrigenomics Research Group, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Tarragona, Spain
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Yagita K, Honda H, Ohara T, Koyama S, Noguchi H, Oda Y, Yamasaki R, Isobe N, Ninomiya T. Association between hypothalamic Alzheimer's disease pathology and body mass index: The Hisayama study. Neuropathology 2024; 44:388-400. [PMID: 38566440 DOI: 10.1111/neup.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024]
Abstract
The hypothalamus is the region of the brain that integrates the neuroendocrine system and whole-body metabolism. Patients with Alzheimer's disease (AD) have been reported to exhibit pathological changes in the hypothalamus, such as neurofibrillary tangles (NFTs) and amyloid plaques (APs). However, few studies have investigated whether hypothalamic AD pathology is associated with clinical factors. We investigated the association between AD-related pathological changes in the hypothalamus and clinical pictures using autopsied brain samples obtained from deceased residents of a Japanese community. A total of 85 autopsied brain samples were semi-quantitatively analyzed for AD pathology, including NFTs and APs. Our histopathological studies showed that several hypothalamic nuclei, such as the tuberomammillary nucleus (TBM) and lateral hypothalamic area (LHA), are vulnerable to AD pathologies. NFTs are observed in various neuropathological states, including normal cognitive cases, whereas APs are predominantly observed in AD. Regarding the association between hypothalamic AD pathologies and clinical factors, the degree of APs in the TBM and LHA was associated with a lower body mass index while alive, after adjusting for sex and age at death. However, we found no significant association between hypothalamic AD pathology and the prevalence of hypertension, diabetes, or dyslipidemia. Our study showed that a lower BMI, which is a poor prognostic factor of AD, might be associated with hypothalamic AP pathology and highlighted new insights regarding the disruption of the brain-whole body axis in AD.
Collapse
Affiliation(s)
- Kaoru Yagita
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Honda
- Neuropathology Center, National Hospital Organization, Omuta National Hospital, Fukuoka, Japan
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiko Koyama
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiharu Ninomiya
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Center for Cohort Studies, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Schellekens H, Torres-Fuentes C, Arola L, Bravo FI, Muguerza B. Sweet treats before sleep disrupt the clock system and increase metabolic risk markers in healthy rats. Acta Physiol (Oxf) 2023; 239:e14005. [PMID: 37243893 DOI: 10.1111/apha.14005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
AIM Biological rhythms are endogenously generated natural cycles that act as pacemakers of different physiological mechanisms and homeostasis in the organism, and whose disruption increases metabolic risk. The circadian rhythm is not only reset by light but it is also regulated by behavioral cues such as timing of food intake. This study investigates whether the chronic consumption of a sweet treat before sleeping can disrupt diurnal rhythmicity and metabolism in healthy rats. METHODS For this, 32 Fischer rats were administered daily a low dose of sugar (160 mg/kg, equivalent to 2.5 g in humans) as a sweet treat at 8:00 a.m. or 8:00 p.m. (ZT0 and ZT12, respectively) for 4 weeks. To elucidate diurnal rhythmicity of clock gene expression and metabolic parameters, animals were sacrificed at different times, including 1, 7, 13, and 19 h after the last sugar dose (ZT1, ZT7, ZT13, and ZT19). RESULTS Increased body weight gain and higher cardiometabolic risk were observed when sweet treat was administered at the beginning of the resting period. Moreover, central clock and food intake signaling genes varied depending on snack time. Specifically, the hypothalamic expression of Nampt, Bmal1, Rev-erbα, and Cart showed prominent changes in their diurnal expression pattern, highlighting that sweet treat before bedtime disrupts hypothalamic control of energy homeostasis. CONCLUSIONS These results show that central clock genes and metabolic effects following a low dose of sugar are strongly time-dependent, causing higher circadian metabolic disruption when it is consumed at the beginning of the resting period, that is, with the late-night snack.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Raúl López-Fernández-Sobrino
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Torres-Fuentes
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Lluis Arola
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Francisca Isabel Bravo
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
| | - Begoña Muguerza
- Biochemistry and Biotechnology Department, Nutrigenomics Research Group, University Rovira i Virgili, Tarragona, Spain
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
4
|
Soliz-Rueda JR, López-Fernández-Sobrino R, Torres-Fuentes C, Bravo FI, Suárez M, Mulero M, Muguerza B. Metabolism disturbance by light/dark cycle switching depends on the rat health status: the role of grape seed flavanols. Food Funct 2023; 14:6443-6454. [PMID: 37377055 DOI: 10.1039/d3fo00260h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Changes in light/dark cycles and obesogenic diets are related to the disruption of circadian rhythms and metabolic disorders. Grape seed flavanols have shown beneficial effects on metabolic diseases and, recently, a circadian system modulation has been suggested to mediate their health-enhancing properties. Therefore, the aim of this study was to evaluate the grape seed (poly)phenol extract (GSPE) effects in healthy and obese rats after a light/dark cycle disruption. Forty-eight rats were fed a standard (STD) or cafeteria (CAF) diet for 6 weeks under STD conditions of a light/dark cycle (12 h light per day, L12). Then, animals were switched to a long (18 h light per day, L18) or short (6 h light per day, L6) photoperiod and administered a vehicle (VH) or GSPE (25 mg kg-1) for 1 week. The results showed changes in serum lipids and insulin and metabolomic profiles dependent on the photoperiod and animal health status. GSPE administration improved serum parameters and increased the Nampt gene expression in CAF rats and modified the metabolomic profile in a photoperiod-dependent manner. Metabolic effects of light/dark disturbance depend on the health status of the rats, with diet-induced CAF-induced obese rats being more affected. Grape seed flavanols improve the metabolic status in a photoperiod-dependent manner and their effects on the circadian system suggest that part of their metabolic effects could be mediated by their action on biological rhythms.
Collapse
Affiliation(s)
- Jorge R Soliz-Rueda
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Raúl López-Fernández-Sobrino
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
| | - Cristina Torres-Fuentes
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Francisca I Bravo
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Manuel Suárez
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Miquel Mulero
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| | - Begoña Muguerza
- University Rovira i Virgili, Biochemistry and Biotechnology Department, Nutrigenomics Research Group, Tarragona, 43007, Spain.
- Pere Virgili Institute for Health Research (IISPV), Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, 43007 Tarragona, Spain
| |
Collapse
|
5
|
Park JW, Roh E, Kang GM, Gil SY, Kim HK, Lee CH, Jang WH, Park SE, Moon SY, Kim SJ, Jeong SY, Park CB, Lim HS, Oh YR, Jung HN, Kwon O, Youn BS, Son GH, Min SH, Kim MS. Circulating blood eNAMPT drives the circadian rhythms in locomotor activity and energy expenditure. Nat Commun 2023; 14:1994. [PMID: 37031230 PMCID: PMC10082796 DOI: 10.1038/s41467-023-37517-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/20/2023] [Indexed: 04/10/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.
Collapse
Affiliation(s)
- Jae Woo Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Eun Roh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, 14068, Korea
| | - Gil Myoung Kang
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - So Young Gil
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Hyun Kyong Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Chan Hee Lee
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon, 24252, Korea
| | - Won Hee Jang
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Se Eun Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Sang Yun Moon
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Seong Jun Kim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - So Yeon Jeong
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Chae Beom Park
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Hyo Sun Lim
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Yu Rim Oh
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Han Na Jung
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | | | - Gi Hoon Son
- Department of Biomedical Science, Korea University College of Medicine, Seoul, 02841, Korea
| | - Se Hee Min
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea
| | - Min-Seon Kim
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
- Division of Endocrinology and Metabolism, Diabetes Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Korea.
| |
Collapse
|
6
|
Fujii M, Setoyama D, Gotoh K, Dozono Y, Yagi M, Ikeda M, Ide T, Uchiumi T, Kang D. TFAM expression in brown adipocytes confers obesity resistance by secreting extracellular vesicles that promote self-activation. iScience 2022; 25:104889. [PMID: 36046191 PMCID: PMC9421388 DOI: 10.1016/j.isci.2022.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The occurrence of diet-induced obesity has been increasing worldwide and has become a major health concern. Mitochondria are densely distributed in brown adipose tissue and are involved in lipid consumption. Therefore, increasing energy expenditure through the activation of brown adipocytes may be a potential therapy for obesity. Our findings showed that mitochondrial transcription factor A (TFAM) homozygous transgenic (TgTg) mice had highly activated brown adipocytes and increased expression of oxidative phosphorylation, leading to resistance to obesity. Transplantation models of TFAM-expressing brown adipocytes could mimic the phenotype of TFAM TgTg mice, and proving their anti-obesity effect. We found that brown adipocytes secrete exosomes which enable self-activation in an autocrine and paracrine manner. The secretion was enhanced in TFAM TgTg brown adipocytes, resulting in a higher activation. These findings may lead to a promising treatment strategy for obesity through selective stimulation of exosome secretion. Human TFAM overexpression in BAT promotes strong anti-obesity effects Increasing mitochondrial function in hTFAM TgTg mice facilitates EVs secretion Enhanced EV released in TgTg brown adipocytes induce self-differentiation/activation
Collapse
Affiliation(s)
- Masakazu Fujii
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Internal Medicine, Fukuoka Prefectural Social Insurance Medical Association, Inatsuki Hospital, Kama 820-0207, Japan
- Department of Internal Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Corresponding author
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yushi Dozono
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|