1
|
Gu X, Wang P, Huang J, Chen S, Li D, Pu S, Li J, Wen J. Structural and physicochemical properties of rice starch from a variety with high resistant starch and low amylose content. Front Nutr 2024; 11:1413923. [PMID: 38860156 PMCID: PMC11163103 DOI: 10.3389/fnut.2024.1413923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Research on the physicochemical properties of rice-derived endo-sperm high resistant starch (RS) with low amylose content (AC) is limited. In this study, we evaluated the physicochemical characteristics of such a starch variety and revealed that the starch granules exhibit a smoother, more refined surface with distinct edges, increased compactness, higher order of surface, and fewer cavities compared to those of a low RS rice variety. The starch crystal was classified as an A-type, which may be connected to the high amylose-lipid complex content. The branched internal long chains (B2 + B3) were abundant, allowing for easy entanglement with other molecular chains and a compact structure. Differential scanning calorimetry revealed the need for high temperature and energy to disrupt the double helix structure within the crystallization region of starch. Furthermore, starch viscosity analysis revealed a high cold paste viscosity, consistency, and setback value, with recrystallization yielding a stable structure, increased viscosity, and enhanced hydrolysis resistance to enzymes.
Collapse
Affiliation(s)
- Xue Gu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Peng Wang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juyuan Huang
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shuangqin Chen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Dandan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shihuang Pu
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
| | - Juan Li
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Jiancheng Wen
- Rice Research Institute, Yunnan Agricultural University, Kunming, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
3
|
Zeng Y, Ali MK, Du J, Li X, Yang X, Yang J, Pu X, Yang L, Hong J, Mou B, Li L, Zhou Y. Resistant Starch in Rice: Its Biosynthesis and Mechanism of Action Against Diabetes-Related Diseases. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yawen Zeng
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Muhammad Kazim Ali
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Karachi Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Juan Du
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xia Li
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaomeng Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Key Laboratory of the Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jiazhen Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xiaoying Pu
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Li’E Yang
- Agricultural Biotechnology Key Laboratory of Yunnan Province, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jingan Hong
- Clinical Nutrition Department, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Bo Mou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Yan Zhou
- Clinical Nutrition Department, The Second People’s Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
4
|
Luo J, Butardo VM, Yang Q, Konik-Rose C, Colgrave ML, Millar A, Jobling SA, Li Z. The impact of the indica rice SSIIa allele on the apparent high amylose starch from rice grain with downregulated japonica SBEIIb. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2961-2974. [PMID: 32651668 DOI: 10.1007/s00122-020-03649-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/01/2020] [Indexed: 05/24/2023]
Abstract
Catalytically active indica SSIIa allele in high amylose rice with down-regulated japonica SBEIIb can increase starch content and modify the starch structure and properties without changing its amylose content. Rice (Oryza sativa) genotypes with inactive starch synthase IIa (SSIIa) with recessive variants of starch branching enzyme IIb (SBEIIb) exhibit a range of alterations in grain phenotype, starch granule morphology, starch granule bound proteins, starch structure, and functional properties. However, the interactions between the two enzymes have not been thoroughly investigated yet. We analysed recombinant rice lines having down-regulated SBEIIb expression (SBEIIbDR) with either indica or japonica type SSIIa (SSIIaind or SSIIajap). In SBEIIbDR rice starch granules, the increased abundance of two protein bands (SSI and SSIIa) was found with eight additional protein bands not generally associated with starch granules. The amount of SSIIa was higher in SSIIaindSBEIIbDR than SSIIajapSBEIIbDR, which indicated that indica type SSIIa, possibly in the monomer form, was extensively involved in starch biosynthesis in the SBEIIbDR endosperm. Furthermore, SSIIaindSBEIIbDR grains had higher total starch content and higher starch swelling power than SSIIajapSBEIIbDR lines, but the amylopectin gelatinization temperatures and enthalpy and the apparent amylose content remained similar. In summary, this work suggests that SSIIaind can partly compensate for the alteration of starch synthesis resulting from the SBEIIb down-regulation in japonica background without reducing its amylose content. The study provides insight into the starch structural and textural improvements of high amylose starch.
Collapse
Affiliation(s)
- Jixun Luo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Vito M Butardo
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Qiang Yang
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | | | | | - Anthony Millar
- Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia
| | - Stephen A Jobling
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Zhongyi Li
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
5
|
Tian QQ, Li X, Lu CM, Fang XW. Breeding Rice lines for physio-functional food through indica ‘Zhaxima’ × japonica ‘Nanjing 46’ haploid technique. FOOD PRODUCTION, PROCESSING AND NUTRITION 2019. [DOI: 10.1186/s43014-019-0010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractResistant starch (RS) encompasses those forms of starch which are not accessible to human digestive enzymes and are fermented in the colons producing short chain fatty acids. The plant materials containing RS are few in the world. In this contribution, the culture ability of callus from anthers of F1 plants from, landraces, ‘Zhaxima’(Oryza sativa var. indica, high-RS rice line with 7.705 ± 0.142, g/100 g) × ‘Nanjing 46’ (Oryza sativa var. japonica, rice variety with RS content (g/100 g) of 0.200 ± 0.001 crosses were studied for obtaining high RS rice plants. The results showed that when M8 basic induction medium was added with 1.5 mg /L 2,4-D、2 mg /LNAA and 0.3 mg /L KT, the inductivity of callus was high as 32.14% for 21 d after pretreatment at 4 °C for 3 d; When MS differentiation basic medium was added with 2 mg /LKT and 3 mg /L ABA, the frequency of regeneration for callus was 50.3% with only a regeneration frequency of 4.55% grown into green seedlings. The RS content in the seeds was between those of the two parents and was partially normally distributed, the highest RS contents of the regenerated plants was as high as 7.66 ± 1.197%. This produced an efficient technology for regenerating stable rice lines with high RS and good eating quality using anthers culture.
Collapse
|
6
|
Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019; 11:nu11051155. [PMID: 31126110 PMCID: PMC6566984 DOI: 10.3390/nu11051155] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Observational studies have shown that dietary fiber intake is associated with decreased risk of cardiovascular disease. Dietary fiber is a non-digestible form of carbohydrates, due to the lack of the digestive enzyme in humans required to digest fiber. Dietary fibers and lignin are intrinsic to plants and are classified according to their water solubility properties as either soluble or insoluble fibers. Water-soluble fibers include pectin, gums, mucilage, fructans, and some resistant starches. They are present in some fruits, vegetables, oats, and barley. Soluble fibers have been shown to lower blood cholesterol by several mechanisms. On the other hand, water-insoluble fibers mainly include lignin, cellulose, and hemicellulose; whole-grain foods, bran, nuts, and seeds are rich in these fibers. Water-insoluble fibers have rapid gastric emptying, and as such may decrease the intestinal transit time and increase fecal bulk, thus promoting digestive regularity. In addition to dietary fiber, isolated and extracted fibers are known as functional fiber and have been shown to induce beneficial health effects when added to food during processing. The recommended daily allowances (RDAs) for total fiber intake for men and women aged 19–50 are 38 gram/day and 25 gram/day, respectively. It is worth noting that the RDA recommendations are for healthy people and do not apply to individuals with some chronic diseases. Studies have shown that most Americans do not consume the recommended intake of fiber. This review will summarize the current knowledge regarding dietary fiber, sources of food containing fiber, atherosclerosis, and heart disease risk reduction.
Collapse
|
7
|
Shen KP, Hao CL, Yen HW, Chen CY, Chen JH, Chen FC, Lin HL. Pre-germinated brown rice prevented high fat diet induced hyperlipidemia through ameliorating lipid synthesis and metabolism in C57BL/6J mice. J Clin Biochem Nutr 2016; 59:39-44. [PMID: 27499577 PMCID: PMC4933684 DOI: 10.3164/jcbn.15-117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/24/2016] [Indexed: 12/22/2022] Open
Abstract
Pre-germinated brown rice (PGBR) can ameliorate hyperlipidemia, but the action mechanism is not clear. We focus the mechanisms of PGBR prevented hyperlipidemia. Six-week-old mice were divided into: standard-regular diet (SRD), high-fat diet (HFD) and HFD with PGBR (HFD + PGBR) groups for 16 weeks. The HFD group has higher concentrations of TG, TC, HDL and Non-HDL in the blood, and a higher atherosclerosis index (AI). The TG levels in the liver, and TG, bile acid levels in the feces were enhanced; and the total adipocytokines level in adipose tissue was reduced. The HFD group had higher protein expressions of SREBP-1, SCD-1, FAS, LDLR, and CYP7α1 in the liver. Moreover, the greater expressions of SREBP-1, SCD-1, FAS and the less expressions of PPAR-α and adiponectin were in adipose tissue. In the HFD + PGBR group, the PGBR regulated the levels of TG, TC, HDL, Non-HDL, AI and adipocytokines. PGBR increased more cholesterol and bile acid exhaust in feces. The SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α proteins in the liver; and the SREBP-1, SCD-1, FAS, PPAR-α and adiponectin proteins in adipose tissue were reversed by PGBR. Taken together, PGBR can improve lipid synthesis and metabolism, and we suggest PGBR is a recommendable food for controlling hyperlipidemia.
Collapse
Affiliation(s)
- Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung 90053, Taiwan
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chun-Yen Chen
- MS program for Applied Health and Biotechnology, Meiho University, Pingtung 91202, Taiwan
| | - Jia-Hao Chen
- MS program for Applied Health and Biotechnology, Meiho University, Pingtung 91202, Taiwan
| | - Fu-Chih Chen
- Department of Chemistry, National Cheng-Kung University, Tainan 70101, Taiwan
| | - Hui-Li Lin
- Department of Food Science and Nutrition, Meiho University, Pingtung 91202, Taiwan
| |
Collapse
|
8
|
Matsumoto K, Yasuyoshi E, Nishi K, Honda Y, Nakaya M, Kitamura S. Resistant starch-rich wx/ae brown rice prevents insulin resistance and hypertriglyceridaemia in type 2 diabetic NSY mice. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
9
|
Hypolipidemic effects of starch and γ-oryzanol from wx/ae double-mutant rice on BALB/c.KOR-Apoe(shl) mice. Biosci Biotechnol Biochem 2013; 77:1435-40. [PMID: 23832334 DOI: 10.1271/bbb.130087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
waxy/amylose-extender (wx/ae) double-mutant japonica rice (Oryza sativa L.) produces resistant starch (RS) and a large amount of γ-oryzanol. Our previous study has shown the hypolipidemic effect of wx/ae brown rice on mice. To identify the functional constituents of the hypolipidemic activity in wx/ae rice, we prepared pure wx/ae starch and γ-oryzanol from wx/ae rice and investigated their effect on the lipid metabolism in BALB/c.KOR/Stm Slc-Apoe(shl) mice. The mice were fed for 3 weeks a diet containing non-mutant rice starch, non-mutant rice starch plus γ-oryzanol, wx/ae starch, or wx/ae starch plus γ-oryzanol. γ-Oryzanol by itself had no effect on the lipid metabolism, and wx/ae starch prevented an accumulation of triacylglycerol (TAG) in the liver. Interestingly, the combination of wx/ae starch plus γ-oryzanol not only prevented a TAG accumulation in the liver, but also partially suppressed the rise in plasma TAG concentration, indicating that wx/ae starch and γ-oryzanol could have a synergistic effect on the lipid metabolism.
Collapse
|
10
|
Current world literature. Curr Opin Lipidol 2013; 24:178-81. [PMID: 23481230 DOI: 10.1097/mol.0b013e32835f8a8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|