1
|
Horaguchi Y, Yokomichi M, Takahashi M, Xu F, Konno H, Makabe K, Yano S. Addition of α-1,3-glucan-binding domains to α-1,3-glucanase Agn1p from Schizosaccharomyces pombe enhances hydrolytic activity of insoluble α-1,3-glucan. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38346750 DOI: 10.2323/jgam.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The glycoside hydrolase (GH) 71 α-1,3-glucanase (Agn1p) from Schizosaccharomyces pombe consists of an N-terminal signal sequence and a catalytic domain. Meanwhile, the GH87 α-1,3-glucanase (Agl-KA) from Bacillus circulans KA-304 consists of an N-terminal signal sequence, a first discoidin domain (DS1), a carbohydrate-binding module family 6 (CBM6), a threonine and proline repeat linker (TP), a second discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. DS1, CBM6, and DS2 exhibit α-1,3-glucan binding activity. This study involved genetically fusing TP, DS1, CBM6, TP, and DS2 to the C-terminus of Agn1p, generating the fusion enzyme Agn1p-DCD. The fusion enzyme was then expressed in Escherichia coli and purified from the cell-free extract. Agn1p-DCD and Agn1p exhibited similar characteristics, such as optimal pH, optimal temperature, pH stability, and thermostability. Insoluble α-1,3-glucan (1%) hydrolyzing assay showed that Agn1p-DCD and Agn1p released approximately 7.6 and 5.0 mM of reducing sugars, respectively, after 48 h of reaction. Kinetic analysis and an α-1,3-glucan binding assay indicated that the addition of DS1, CBM6, and DS2 enhanced the affinity of Agn1p for α-1,3-glucan. Moreover, Agn1p-DCD contributed to enhancing the fungal growth inhibition activity when combined with a mixture of GH19 chitinase and GH16 β-1,3-glucanase.
Collapse
Affiliation(s)
- Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University
| | - Moe Yokomichi
- Graduate School of Sciences and Engineering, Yamagata University
| | - Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University
| | - Fusheng Xu
- Graduate School of Sciences and Engineering, Yamagata University
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University
| |
Collapse
|
2
|
Takahashi M, Yokomichi M, Takei Y, Horaguchi Y, Makabe K, Konno H, Yano S, Kokeguchi S. Domain structure and function of α-1,3-glucanase Agl-EK14 from the gram-negative bacterium Flavobacterium sp. EK-14. J Biosci Bioeng 2024; 138:118-126. [PMID: 38825558 DOI: 10.1016/j.jbiosc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 06/04/2024]
Abstract
The α-1,3-glucanase Agl-EK14 from Flavobacterium sp. EK-14 comprises a signal peptide (SP), a catalytic domain (CAT), a first immunoglobulin-like domain (Ig1), a second immunoglobulin-like domain (Ig2), a ricin B-like lectin domain (RicinB), and a carboxy-terminal domain (CTD). SP and CTD are predicted to be involved in extracellular secretion, while the roles of Ig1, Ig2, and RicinB are unclear. To clarify their roles, domain deletion enzymes Agl-EK14ΔRicinB, Agl-EK14ΔIg2RicinB, and Agl-EK14ΔIg1Ig2RicinB were constructed. The insoluble α-1,3-glucan hydrolytic, α-1,3-glucan binding, and fungal cell wall hydrolytic activities of the deletion enzymes were almost the same and lower than those of Agl-EK14. Kinetic analysis revealed that the Km values of the deletion enzymes were similar and uniformly higher than those of Agl-EK14. These results suggest that the deletion of RicinB causes a decline in binding and hydrolytic activity and increases the Km value. To confirm the role of RicinB, Ig1, Ig2, and RicinB were fused with green fluorescent protein (GFP). As a result, RicinB-fused GFP (GFP-RicinB) showed binding to insoluble α-1,3-glucan and Aspergillus oryzae cell walls, whereas Ig1- and Ig2-fused GFP did not. These results indicated that RicinB is involved in α-1,3-glucan binding. The fusion protein GFP-Ig1Ig2RicinB was also constructed and GFP-Ig1Ig2RicinB showed strong binding to the cell wall of A. oryzae compared to GFP-RicinB. Gel filtration column chromatography suggested that the strong binding was due to GFP-Ig1Ig2RicinB loosely associated with itself.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Moe Yokomichi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuki Takei
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Susumu Kokeguchi
- Department of Bacteriology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
3
|
Konishi Y, Sato K, Nabetani K, Shirasaka N, Fukuta Y. Expression and characterization of α-1,3-glucanase from Paenibacillus alginolyticus NBRC15375, which is classified into subgroup 2 (minor group) of GH family 87. Biosci Biotechnol Biochem 2024; 88:538-545. [PMID: 38331414 DOI: 10.1093/bbb/zbae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.
Collapse
Affiliation(s)
- Yasuhito Konishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Department of Food and Nutrition, Kyoto Bunkyo Junior College, Uji, Kyoto, Japan
| | - Kaito Sato
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Kai Nabetani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Norifumi Shirasaka
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yasuhisa Fukuta
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
4
|
Miyazawa K, Umeyama T, Takatsuka S, Muraosa Y, Hoshino Y, Yano S, Abe K, Miyazaki Y. Real-time monitoring of mycelial growth in liquid culture using hyphal dispersion mutant of Aspergillus fumigatus. Med Mycol 2024; 62:myae011. [PMID: 38429972 DOI: 10.1093/mmy/myae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/03/2024] Open
Abstract
Hyphal pellet formation by Aspergillus species in liquid cultures is one of the main obstacles to high-throughput anti-Aspergillus reagent screening. We previously constructed a hyphal dispersion mutant of Aspergillus fumigatus by disrupting the genes encoding the primary cell wall α-1,3-glucan synthase Ags1 and putative galactosaminogalactan synthase Gtb3 (Δags1Δgtb3). Mycelial growth of the mutant in liquid cultures monitored by optical density was reproducible, and the dose-response of hyphal growth to antifungal agents has been quantified by optical density. However, Δags1Δgtb3 still forms hyphal pellets in some rich growth media. Here, we constructed a disruptant lacking all three α-1,3-glucan synthases and galactosaminogalactan synthase (Δags1Δags2Δags3Δgtb3), and confirmed that its hyphae were dispersed in all the media tested. We established an automatic method to monitor hyphal growth of the mutant in a 24-well plate shaken with a real-time plate reader. Dose-dependent growth suppression and unique growth responses to antifungal agents (voriconazole, amphotericin B, and micafungin) were clearly observed. A 96-well plate was also found to be useful for the evaluation of mycelial growth by optical density. Our method is potentially applicable to high-throughput screening for anti-Aspergillus agents.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasunori Muraosa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Yonezawa, Japan
| | - Keietsu Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
5
|
Nagahashi Y, Hasegawa K, Takagi K, Yano S. Enzyme immobilization on α-1,3-glucan: development of flow reactor with fusion protein of α-1,3-glucan binding domains and histamine dehydrogenase. J GEN APPL MICROBIOL 2024; 69:206-214. [PMID: 37197975 DOI: 10.2323/jgam.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
α-1,3-Glucanase Agl-KA from Bacillus circulans KA-304 consists of a discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), a threonine-proline-rich-linker (TP linker), a discoidin domain (DS2), an uncharacterized domain, and a catalytic domain. The binding of DS1, CBM6, and DS2 to α-1,3-glucan can be improved in the presence of two of these three domains. In this study, DS1, CBM6, and TP linker were genetically fused to histamine dehydrogenase (HmDH) from Nocardioides simplex NBRC 12069. The fusion enzyme, AGBDs-HmDH, was expressed in Escherichia coli Rosetta 2 (DE3) and purified from the cell-free extract. AGBDs-HmDH bound to 1% micro-particle of α-1,3-glucan (diameter: less than 1 μm) and 7.5% coarse-particle of α-1,3-glucan (less than 200 μm) at about 97 % and 70% of the initial amounts of the enzyme, respectively. A reactor for flow injection analysis filled with AGBDs-HmDH immobilized on the coarse-particle of α-1,3-glucan was successfully applied to determine histamine. A linear calibration curve was observed in the range for about 0.1 to 3.0 mM histamine. These findings suggest that the combination of α-1,3-glucan and α-1,3-glucan binding domains is a candidate for novel enzyme immobilization.
Collapse
Affiliation(s)
- Yuta Nagahashi
- Graduate School of Sciences and Engineering, Yamagata University
| | - Kazuki Hasegawa
- Graduate School of Sciences and Engineering, Yamagata University
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University
| |
Collapse
|
6
|
Concha-Eloko R, Barberán-Martínez P, Sanjuán R, Domingo-Calap P. Broad-range capsule-dependent lytic Sugarlandvirus against Klebsiella sp. Microbiol Spectr 2023; 11:e0429822. [PMID: 37882584 PMCID: PMC10714931 DOI: 10.1128/spectrum.04298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE The emergence of multi-drug resistant bacteria is a global health problem. Among them, Klebsiella pneumoniae is considered a high-priority pathogen, making it necessary to develop new therapeutic tools to reduce the bacterial burden in an effective and sustainable manner. Phages, bacterial viruses, are very promising tools. However, phages are highy specific, rendering large-scale therapeutics costly to implement. This is especially certain in Klebsiella, a capsular bacterium in which phages have been shown to be capsular type dependent, infecting one or a few capsular types through specific enzymes called depolymerases. In this study, we have isolated and characterized novel phages with lytic ability against bacteria from a wide variety of capsular types, representing the Klebsiella phages with the widest range of infection described. Remarkably, these broad-range phages showed capsule dependency, despite the absence of depolymerases in their genomes, implying that infectivity could be governed by alternative mechanisms yet to be uncovered.
Collapse
Affiliation(s)
- Robby Concha-Eloko
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | | | - Rafael Sanjuán
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| | - Pilar Domingo-Calap
- Instituto de Biología Integrativa de Sistemas, Universitat de València-CSIC, Paterna, Spain
| |
Collapse
|
7
|
Takahashi M, Yano S, Horaguchi Y, Otsuka Y, Suyotha W, Makabe K, Konno H, Kokeguchi S. α-1,3-Glucanase from the gram-negative bacterium Flavobacterium sp. EK-14 hydrolyzes fungal cell wall α-1,3-glucan. Sci Rep 2023; 13:21420. [PMID: 38049513 PMCID: PMC10696023 DOI: 10.1038/s41598-023-48627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
The glycoside hydrolase (GH) 87 α-1,3-glucanase (Agl-EK14) gene was cloned from the genomic DNA of the gram-negative bacterium Flavobacterium sp. EK14. The gene consisted of 2940 nucleotides and encoded 980 amino acid residues. The deduced amino acid sequence of Agl-EK14 included a signal peptide, a catalytic domain, a first immunoglobulin-like domain, a second immunoglobulin-like domain, a ricin B-like lectin domain, and a carboxyl-terminal domain (CTD) involved in extracellular secretion. Phylogenetic analysis of the catalytic domain of GH87 enzymes suggested that Agl-EK14 is distinct from known clusters, such as clusters composed of α-1,3-glucanases from bacilli and mycodextranases from actinomycetes. Agl-EK14 without the signal peptide and CTD hydrolyzed α-1,3-glucan, and the reaction residues from 1 and 2% substrates were almost negligible after 1440 min reaction. Agl-EK14 hydrolyzed the cell wall preparation of Aspergillus oryzae and released glucose, nigerose, and nigero-triose from the cell wall preparation. After treatment of A. oryzae live mycelia with Agl-EK14 (at least 0.5 nmol/ml), mycelia were no longer stained by red fluorescent protein-fused α-1,3-glucan binding domains of α-1,3-glucanase Agl-KA from Bacillus circulans KA-304. Results suggested that Agl-EK14 can be applied to a fungal cell wall lytic enzyme.
Collapse
Affiliation(s)
- Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuitsu Otsuka
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Wasana Suyotha
- Enzyme Technology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Susumu Kokeguchi
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| |
Collapse
|
8
|
Horaguchi Y, Takahashi M, Takamatsu K, Konno H, Makabe K, Yano S. Heterologous expression of α-1,3-glucanase Agn1p from Schizosaccharomyces pombe, and efficient production of nigero-oligosaccharides by enzymatic hydrolysis from solubilized α-1,3;1,6-glucan. Biosci Biotechnol Biochem 2023; 87:1219-1228. [PMID: 37410615 DOI: 10.1093/bbb/zbad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
The glycoside hydrolase family 71 α-1,3-glucanase (Agn1p) of Schizosaccharomyces pombe was expressed in Escherichia coli Rosetta-gami B (DE3). Agn1p (0.5 nmol/mL) hydrolyzed insoluble α-1,3-glucan (1%), and about 3.3 mm reducing sugars were released after 1440 min of reaction. The analysis of reaction products by high-performance liquid chromatography revealed that pentasaccharides accumulated in the reaction mixture as the main products, along with a small amount of mono-, di-, tri-, tetra-, and hexasaccharides. Soluble glucan was prepared from insoluble α-1,3;1,6-glucan by alkaline and sonication treatment to improve the hydrolytic efficiency. As a result, this solubilized α-1,3;1,6-glucan maintained a solubilized state for at least 6 h. Agn1p (0.5 nmol/mL) hydrolyzed the solubilized α-1,3;1,6-glucan (1%), and about 8.2 mm reducing sugars were released after 240 min of reaction. Moreover, Agn1p released about 12.3 mm reducing sugars from 2% of the solubilized α-1,3;1,6-glucan.
Collapse
Affiliation(s)
- Yui Horaguchi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Masaki Takahashi
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Keigo Takamatsu
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Koki Makabe
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, Japan
| |
Collapse
|
9
|
Glycoside hydrolases active on microbial exopolysaccharide α-glucans: structures and function. Essays Biochem 2023; 67:505-520. [PMID: 36876882 DOI: 10.1042/ebc20220219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
Glucose is the most abundant monosaccharide in nature and is an important energy source for living organisms. Glucose exists primarily as oligomers or polymers and organisms break it down and consume it. Starch is an important plant-derived α-glucan in the human diet. The enzymes that degrade this α-glucan have been well studied as they are ubiquitous throughout nature. Some bacteria and fungi produce α-glucans with different glucosidic linkages compared with that of starch, and their structures are quite complex and not fully understood. Compared with enzymes that degrade the α-(1→4) and α-(1→6) linkages in starch, biochemical and structural studies of the enzymes that catabolize α-glucans from these microorganisms are limited. This review focuses on glycoside hydrolases that act on microbial exopolysaccharide α-glucans containing α-(1→6), α-(1→3), and α-(1→2) linkages. Recently acquired information regarding microbial genomes has contributed to the discovery of enzymes with new substrate specificities compared with that of previously studied enzymes. The discovery of new microbial α-glucan-hydrolyzing enzymes suggests previously unknown carbohydrate utilization pathways and reveals strategies for microorganisms to obtain energy from external sources. In addition, structural analysis of α-glucan degrading enzymes has revealed their substrate recognition mechanisms and expanded their potential use as tools for understanding complex carbohydrate structures. In this review, the author summarizes the recent progress in the structural biology of microbial α-glucan degrading enzymes, touching on previous studies of microbial α-glucan degrading enzymes.
Collapse
|
10
|
Horaguchi Y, Yano S, Takamatsu K, Otsuka Y, Suyotha W, Wakayama M, Konno H. Nigero-oligosaccharide production by enzymatic hydrolysis from alkaline-pretreated α-1,3-glucan. J Biosci Bioeng 2023; 135:182-189. [PMID: 36707400 DOI: 10.1016/j.jbiosc.2023.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Nigero-oligosaccharides are α-1,3-linked oligomers of glucose. Glycoside hydrolase 87 type α-1,3-glucanase Agl-KA from Bacillus circulans KA304 is an endo-lytic enzyme that releases nigero-oligosaccharides (tetra-, tri-, and di-saccharide) from α-1,3-glucan. α-1,3-Glucan is insoluble under natural conditions, thus the efficiency of enzymatic hydrolysis is low and only 5 mM of reducing sugars were released from 1% glucan by Agl-KA. To improve hydrolytic efficiency, α-1,3-glucan was solubilized by 1 M NaOH and alkaline-solubilized glucan was adjusted to approximately pH 8. As a result, glucan maintained a solubilized state. This alkaline-pretreated α-1,3-glucan (1%) was hydrolyzed by Agl-KA (0.64 nmol/mL) and approximately 11.6 mM of reducing sugars were released at 240 min of reaction. When 0.016, 0.032, and 0.13 nmol/mL enzyme were added, reducing sugar reached approximately 5.1, 7.5, and 9.8 mM, respectively, and reaction mixtures containing 0.016 and 0.032 nmol/mL enzyme gradually became cloudy. Our findings suggest α-1,3-glucan cannot maintain its solubilized state and gradually becomes insoluble. For deletion enzyme of α-1,3-glucan binding domains from Agl-KA (AglΔDCD-UCD) on glucan hydrolysis (2%), reducing sugar concentrations released by AglΔDCD-UCD were almost the same as Agl-KA. These findings suggest that alkaline-pretreated α-1,3-glucan maintains a soluble state during a short time period and that glucan is efficiently hydrolyzed even by α-1,3-glucanase without α-1,3-glucan binding domains.
Collapse
Affiliation(s)
- Yui Horaguchi
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan.
| | - Keigo Takamatsu
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuitsu Otsuka
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wasana Suyotha
- Enzyme Technology Laboratory, Faculty of Agro-industry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Otsuka Y, Sasaki K, Suyotha W, Furusawa H, Miyazawa K, Konno H, Yano S. Construction of a fusion protein consisting of α-1,3-glucan-binding domains and tetrameric red fluorescent protein, which is involved in the aggregation of α-1,3-glucan and inhibition of fungal biofilm formation. J Biosci Bioeng 2022; 133:524-532. [PMID: 35314116 DOI: 10.1016/j.jbiosc.2022.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
Abstract
Agl-KA, an α-1,3-glucan-hydrolyzing enzyme from Bacillus circulans KA-304, has three α-1,3-glucan-binding domains DS1, CB6, and DS2 (DCD). While their individual binding activities toward insoluble α-1,3-glucan and fungal cell-wall are weak, the three domains in combination bind strongly to the α-1,3-glucan and the cell-wall. In this study, we constructed DCD-tetraRFP by fusing DCD with DsRed-Express2, a tetrameric red fluorescent protein. DCD-tetraRFP forms a tetramer in an aqueous solution and contains twelve substrate-binding domains in one complex. We also constructed DCD-monoGFP by fusing DCD with AcGFP1, a monomeric green fluorescent protein. The molecular weight of DCD-tetraRFP and DCD-monoGFP were compared. The results of gel filtration chromatography and dynamic light scattering indicated that DCD-tetraRFP was larger than DCD-monoGFP, suggesting that DCD-tetraRFP had a tetrameric structure. In addition, DCD-tetraRFP bound to insoluble α-1,3-glucan strongly, and the amount of DCD-tetraRFP binding to 0.01% α-1,3-glucan was about twice of DCD-monoGFP. The Kd values of DCD-tetraRFP (measurements per subunit) and DCD-monoGFP were 0.16 and 0.84 μM, respectively. Adding DCD-tetraRFP to a suspension of α-1,3-glucan caused glucan aggregation; however, adding DCD-monoGFP did not. These data suggested that DCD-tetraRFP had four DCDs sterically arranged in different directions so that DCD-tetraRFP cross-linked with the substrate, causing aggregation. Lastly, the aggregates of DCD-tetraRFP and α-1,3-glucan captured Aspergillus oryzae conidia and decreased their biofilm formation by 80% in a 24-well dish.
Collapse
Affiliation(s)
- Yuitsu Otsuka
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kai Sasaki
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University, Hat Yai 90112, Thailand
| | - Hiroyuki Furusawa
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ken Miyazawa
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hiroyuki Konno
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shigekazu Yano
- Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
12
|
Miyazawa K, Umeyama T, Hoshino Y, Abe K, Miyazaki Y. Quantitative Monitoring of Mycelial Growth of Aspergillus fumigatus in Liquid Culture by Optical Density. Microbiol Spectr 2022; 10:e0006321. [PMID: 34985327 PMCID: PMC8729762 DOI: 10.1128/spectrum.00063-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/17/2021] [Indexed: 01/24/2023] Open
Abstract
Filamentous fungi form multicellular hyphae, which generally form pellets in liquid shake cultures, during the vegetative growth stage. Because of these characteristics, growth-monitoring methods commonly used in bacteria and yeast have not been applied to filamentous fungi. We have recently revealed that the cell wall polysaccharide α-1,3-glucan and extracellular polysaccharide galactosaminogalactan (GAG) contribute to hyphal aggregation in Aspergillus oryzae. Here, we tested whether Aspergillus fumigatus shows dispersed growth in liquid media that can be quantitatively monitored, similar to that of yeasts. We constructed a double disruptant mutant of both the primary α-1,3-glucan synthase gene ags1 and the putative GAG synthase gene gtb3 in A. fumigatus AfS35 and found that the hyphae of this mutant were fully dispersed. Although the mutant lost α-1,3-glucan and GAG, its growth and susceptibility to antifungal agents were not different from those of the parental strain. Mycelial weight of the mutant in shake-flask cultures was proportional to optical density for at least 18 h. We were also able to quantify the dose response of hyphal growth to antifungal agents by measuring optical density. Overall, we established a convenient strategy to monitor A. fumigatus hyphal growth. Our method can be directly used for screening for novel antifungals against Aspergillus species. IMPORTANCE Filamentous fungi generally form hyphal pellets in liquid culture. This property prevents filamentous fungi so that we may apply the methods used for unicellular organisms such as yeast and bacteria. In the present study, by using the fungal pathogen Aspergillus fumigatus strain with modified hyphal surface polysaccharides, we succeeded in monitoring the hyphal growth quantitatively by optical density. The principle of this easy measurement by optical density could lead to a novel standard of hyphal quantification such as those that have been used for yeasts and bacteria. Dose response of hyphal growth by antifungal agents could also be monitored. This method could be useful for screening for novel antifungal reagents against Aspergillus species.
Collapse
Affiliation(s)
- Ken Miyazawa
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Umeyama
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasutaka Hoshino
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Miyazawa K, Yamashita T, Takeuchi A, Kamachi Y, Yoshimi A, Tashiro Y, Koizumi A, Ogata M, Yano S, Kasahara S, Sano M, Yamagata Y, Nakajima T, Abe K. A Glycosylphosphatidylinositol-Anchored α-Amylase Encoded by amyD Contributes to a Decrease in the Molecular Mass of Cell Wall α-1,3-Glucan in Aspergillus nidulans. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:821946. [PMID: 37744142 PMCID: PMC10512252 DOI: 10.3389/ffunb.2021.821946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/22/2021] [Indexed: 09/26/2023]
Abstract
α-1,3-Glucan is one of the main polysaccharides in the cell wall of Aspergillus nidulans. We previously revealed that it plays a role in hyphal aggregation in liquid culture, and that its molecular mass (MM) in an agsA-overexpressing (agsAOE) strain was larger than that in an agsB-overexpressing (agsBOE) strain. The mechanism that regulates its MM is poorly understood. Although the gene amyD, which encodes glycosylphosphatidylinositol (GPI)-anchored α-amylase (AmyD), is involved in the biosynthesis of α-1,3-glucan in A. nidulans, how it regulates this biosynthesis remains unclear. Here we constructed strains with disrupted amyD (ΔamyD) or overexpressed amyD (amyDOE) in the genetic background of the ABPU1 (wild-type), agsAOE, or agsBOE strain, and characterized the chemical structure of α-1,3-glucans in the cell wall of each strain, focusing on their MM. The MM of α-1,3-glucan from the agsBOE amyDOE strain was smaller than that in the parental agsBOE strain. In addition, the MM of α-1,3-glucan from the agsAOE ΔamyD strain was greater than that in the agsAOE strain. These results suggest that AmyD is involved in decreasing the MM of α-1,3-glucan. We also found that the C-terminal GPI-anchoring region is important for these functions.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Laboratory of Filamentous Mycoses, Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaaki Yamashita
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ayumu Takeuchi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yuka Kamachi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yoshimi
- Laboratory of Environmental Interface Technology of Filamentous Fungi, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Yuto Tashiro
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ami Koizumi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Makoto Ogata
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Engineering, Yamagata University, Yonezawa, Japan
| | - Shin Kasahara
- Food Microbiology Unit, School of Food and Agricultural Sciences, Miyagi University, Sendai, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Youhei Yamagata
- Department of Applied Life Science, The United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tasuku Nakajima
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Department of Microbial Resources, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Panti N, Cherdvorapong V, Itoh T, Hibi T, Suyotha W, Yano S, Wakayama M. Functional analysis of α-1,3-glucanase domain structure from Streptomyces thermodiastaticus HF3-3. J GEN APPL MICROBIOL 2021; 67:85-91. [PMID: 33583875 DOI: 10.2323/jgam.2020.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
α-1,3-Glucanase from Streptomyces thermodiastaticus HF3-3 (Agl-ST) has been classified in the glycoside hydrolase (GH) family 87. Agl-ST is a multi-modular domain consisting of an N-terminal β-sandwich domain (β-SW), a catalytic domain, an uncharacterized domain (UC), and a C-terminal discoidin domain (DS). Although Agl-ST did not hydrolyze α-1,4-glycosidic bonds, its amino acid sequence is more similar to GH87 mycodextranase than to α-1,3-glucanase. It might be categorized into a new subfamily of GH87. In this study, we investigated the function of the domains. Several fusion proteins of domains with green fluorescence protein (GFP) were constructed to clarify the function of each domain. The results showed that β-SW and DS domains played a role in binding α-1,3-glucan and enhancing the hydrolysis of α-1,3-glucan. The binding domains, β-SW and DS, also showed binding activity toward xylan, although it was lower than that for α-1,3-glucan. The combination of β-SW and DS domains demonstrated high binding and hydrolysis activities of Agl-ST toward α-1,3-glucan, whereas the catalytic domain showed only a catalytic function. The binding domains also achieved effective binding and hydrolysis of α-1,3-glucan in the cell wall complex of Schizophyllum commune.
Collapse
Affiliation(s)
- Niphawan Panti
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| | | | - Takafumi Itoh
- Department of Bioscience and Biotechnology, Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Faculty of Bioscience and Biotechnology, Fukui Prefectural University
| | - Wassana Suyotha
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| |
Collapse
|
15
|
Itoh T, Panti N, Hayashi J, Toyotake Y, Matsui D, Yano S, Wakayama M, Hibi T. Crystal structure of the catalytic unit of thermostable GH87 α-1,3-glucanase from Streptomyces thermodiastaticus strain HF3-3. Biochem Biophys Res Commun 2020; 533:1170-1176. [PMID: 33041007 DOI: 10.1016/j.bbrc.2020.09.133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
α-1,3-Glucan is a homopolymer composed of D-glucose (Glc) and it is an extracellular polysaccharide found in dental plaque due to Streptococcus species. α-1,3-Glucanase from Streptomyces thermodiastaticus strain HF3-3 (Agl-ST) has been identified as a thermostable α-1,3-glucanase, which is classified into glycoside hydrolase family 87 (GH87) and specifically hydrolyzes α-1,3-glucan with an endo-action. The enzyme has a potential to inhibit the production of dental plaque and to be used for biotechnological applications. Here we show the structure of the catalytic unit of Agl-ST determined at 1.16 Å resolution using X-ray crystallography. The catalytic unit is composed of two modules, a β-sandwich fold module, and a right-handed β-helix fold module, which resembles other structural characterized GH87 enzymes from Bacillus circulans str. KA-304 and Paenibacillus glycanilyticus str. FH11, with moderate sequence identities between each other (approximately 27% between the catalytic units). However, Agl-ST is smaller in size and more thermally stable than the others. A disulfide bond that anchors the C-terminal coil of the β-helix fold, which is expected to contribute to thermal stability only exists in the catalytic unit of Agl-ST.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| | - Niphawan Panti
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Junji Hayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, 770-8513, Japan
| | - Yosuke Toyotake
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Matsui
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Johnan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| |
Collapse
|
16
|
Itoh T, Intuy R, Suyotha W, Hayashi J, Yano S, Makabe K, Wakayama M, Hibi T. Structural insights into substrate recognition and catalysis by glycoside hydrolase family 87 α‐1,3‐glucanase from
Paenibacillus glycanilyticus
FH11. FEBS J 2019; 287:2524-2543. [DOI: 10.1111/febs.15161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/02/2019] [Accepted: 11/28/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology Fukui Prefectural University Eiheiji‐cho Japan
| | - Rattanaporn Intuy
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Wasana Suyotha
- Department of Industrial Biotechnology Faculty of Agro‐industry Prince of Songkla University Hat Yai Thailand
| | - Junji Hayashi
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering Graduate School of Science and Engineering Yamagata University Yonezawa Japan
| | - Koki Makabe
- Department of Biochemical Engineering Graduate School of Science and Engineering Yamagata University Yonezawa Japan
| | - Mamoru Wakayama
- Department of Biotechnology College of Life Sciences Ritsumeikan University Kusatsu Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology Fukui Prefectural University Eiheiji‐cho Japan
| |
Collapse
|
17
|
Crystal structure of the catalytic unit of GH 87-type α-1,3-glucanase Agl-KA from Bacillus circulans. Sci Rep 2019; 9:15295. [PMID: 31653959 PMCID: PMC6814745 DOI: 10.1038/s41598-019-51822-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/08/2019] [Indexed: 11/09/2022] Open
Abstract
Glycoside hydrolase (GH) 87-type α-1,3-glucanase hydrolyses the α-1,3-glucoside linkages of α-1,3-glucan, which is found in fungal cell walls and extracellular polysaccharides produced by oral Streptococci. In this study, we report on the molecular structure of the catalytic unit of GH 87-type α-1,3-glucanase, Agl-KA, from Bacillus circulans, as determined by x-ray crystallography at a resolution of 1.82 Å. The catalytic unit constitutes a complex structure of two tandemly connected domains-the N-terminal galactose-binding-like domain and the C-terminal right-handed β-helix domain. While the β-helix domain is widely found among polysaccharide-processing enzymes, complex formation with the galactose-binding-like domain was observed for the first time. Biochemical assays showed that Asp1067, Asp1090 and Asp1091 are important for catalysis, and these residues are indeed located at the putative substrate-binding cleft, which forms a closed end and explains the product specificity.
Collapse
|
18
|
Miyazawa K, Yoshimi A, Sano M, Tabata F, Sugahara A, Kasahara S, Koizumi A, Yano S, Nakajima T, Abe K. Both Galactosaminogalactan and α-1,3-Glucan Contribute to Aggregation of Aspergillus oryzae Hyphae in Liquid Culture. Front Microbiol 2019; 10:2090. [PMID: 31572319 PMCID: PMC6753227 DOI: 10.3389/fmicb.2019.02090] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/26/2019] [Indexed: 01/02/2023] Open
Abstract
Filamentous fungi generally form aggregated hyphal pellets in liquid culture. We previously reported that α-1,3-glucan-deficient mutants of Aspergillus nidulans did not form hyphal pellets and their hyphae were fully dispersed, and we suggested that α-1,3-glucan functions in hyphal aggregation. However, Aspergillus oryzae α-1,3-glucan-deficient (AGΔ) mutants still form small pellets; therefore, we hypothesized that another factor responsible for forming hyphal pellets remains in these mutants. Here, we identified an extracellular matrix polysaccharide galactosaminogalactan (GAG) as such a factor. To produce a double mutant of A. oryzae (AG-GAGΔ), we disrupted the genes required for GAG biosynthesis in an AGΔ mutant. Hyphae of the double mutant were fully dispersed in liquid culture, suggesting that GAG is involved in hyphal aggregation in A. oryzae. Addition of partially purified GAG fraction to the hyphae of the AG-GAGΔ strain resulted in formation of mycelial pellets. Acetylation of the amino group in galactosamine of GAG weakened GAG aggregation, suggesting that hydrogen bond formation by this group is important for aggregation. Genome sequences suggest that α-1,3-glucan, GAG, or both are present in many filamentous fungi and thus may function in hyphal aggregation in these fungi. We also demonstrated that production of a recombinant polyesterase, CutL1, was higher in the AG-GAGΔ strain than in the wild-type and AGΔ strains. Thus, controlling hyphal aggregation factors of filamentous fungi may increase productivity in the fermentation industry.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Fuka Tabata
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Asumi Sugahara
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shin Kasahara
- Department of Environmental Sciences, School of Food, Agricultural and Environmental Sciences, Miyagi University, Taiwa, Japan
| | - Ami Koizumi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Engineering, Yamagata University, Yonezawa, Japan
| | - Tasuku Nakajima
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Intuy R, Itoh T, Suyotha W, Hayashi J, Yano S, Makabe K, Wakayama M, Hibi T. X-ray crystallographic analysis of the catalytic domain of α-1,3-glucanase FH1 from Paenibacillus glycanilyticus overexpressed in Brevibacillus choshinensis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2018; 74:770-773. [PMID: 30511670 DOI: 10.1107/s2053230x18013109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/15/2018] [Indexed: 02/04/2023]
Abstract
α-1,3-Glucanase hydrolyzes α-1,3-glucan, an insoluble linear α-1,3-linked homopolymer of glucose that is found in the extracellular polysaccharides produced by oral streptococci in dental plaque and in fungal cell walls. This enzyme could be of application in dental care and the development of fungal cell-wall lytic enzymes, but its three-dimensional structure has not been available to date. In this study, the recombinant catalytic domain of α-1,3-glucanase FH1 from Paenibacillus glycanilyticus FH11, which is classified into glycoside hydrolase family 87, was prepared using a Brevibacillus choshinensis expression system and purified in a soluble form. Crystals of the purified protein were produced by the sitting-drop vapor-diffusion method. Diffraction data were collected to a resolution of 1.6 Å using synchrotron radiation. The crystals obtained belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = b = 132.6, c = 76.1 Å. The space group and unit-cell parameters suggest that there is one molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Rattanaporn Intuy
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Takafumi Itoh
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Wasana Suyotha
- Department of Industrial Biotechnology, Prince of Songkla University, Hat Yai, Thailand
| | - Junji Hayashi
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Yamagata University, Johnan, Yonezawa, Yamagata 992-8510, Japan
| | - Koki Makabe
- Department of Biochemical Engineering, Yamagata University, Johnan, Yonezawa, Yamagata 992-8510, Japan
| | - Mamoru Wakayama
- College of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Takao Hibi
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
20
|
Yano S, Suyotha W, Zanma S, Konno H, Cherdvorapong V, Wakayama M. Deletion of uncharacterized domain from α-1,3-glucanase of Bacillus circulans KA-304 enhances heterologous enzyme production in Escherichia coli. J GEN APPL MICROBIOL 2018; 64:212-220. [PMID: 29743460 DOI: 10.2323/jgam.2017.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
α-1,3-Glucanase (Agl-KA) of Bacillus circulans KA-304 consists of an N-terminal discoidin domain (DS1), a carbohydrate binding module family 6 (CBM6), threonine and proline repeats (TP), a second discoidin domain (DS2), an uncharacterized conserved domain (UCD), and a C-terminal catalytic domain. Previously, we reported that DS1, CBM6, and DS2 have α-1,3-glucan-binding activity and contribute to α-1,3-glucan hydrolysis. In this study, UCD deletion mutant (AglΔUCD) was constructed, and its properties were compared with those of Agl-KA. α-1,3-Glucan hydrolyzing, α-1,3-glucan binding, and protoplast-forming activities of AglΔUCD were almost the same as those of Agl-KA. kcat/Km values of AgΔUCD and Agl-KA were 11.4 and 11.1 s-1 mg-1 mL, respectively. AglΔUCD and Agl-KA exhibited similar characteristics, such as optimal pH, pH stability, optimal temperature, and thermostability. These results suggest that UCD is not α-1,3-glucan-binding and flexible linker domain, and that deletion of UCD does not affect the affinity of N-terminal binding domains and the catalytic action of the C-terminal domain. Subsequently, heterologous UCenzyme productivity of AglΔD in Escherichia coli was compared with that of Agl-KA. The productivity of AglΔUCD was about 4-fold larger than that of Agl-KA after an 8-h induction at 30°C. In the case of induction at 20°C, the productivity of AglΔUCD was also larger than that of Agl-KA. These findings indicate that deletion of only UCD enhances the enzyme productivity in E. coli.
Collapse
Affiliation(s)
- Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | - Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University
| | - Sumika Zanma
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | | | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| |
Collapse
|
21
|
Miyazawa K, Yoshimi A, Kasahara S, Sugahara A, Koizumi A, Yano S, Kimura S, Iwata T, Sano M, Abe K. Molecular Mass and Localization of α-1,3-Glucan in Cell Wall Control the Degree of Hyphal Aggregation in Liquid Culture of Aspergillus nidulans. Front Microbiol 2018; 9:2623. [PMID: 30459735 PMCID: PMC6232457 DOI: 10.3389/fmicb.2018.02623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 12/21/2022] Open
Abstract
α-1,3-Glucan is one of the main polysaccharides in the cell wall of filamentous fungi. Aspergillus nidulans has two α-1,3-glucan synthase genes, agsA and agsB. We previously revealed that AgsB is a major α-1,3-glucan synthase in vegetative hyphae, but the function of AgsA remained unknown because of its low expression level and lack of phenotypic alteration upon gene disruption. To clarify the role of α-1,3-glucan in hyphal aggregation, we constructed strains overexpressing agsA (agsAOE) or agsB (agsBOE), in which the other α-1,3-glucan synthase gene was disrupted. In liquid culture, the wild-type and agsBOE strains formed tightly aggregated hyphal pellets, whereas agsAOE hyphae aggregated weakly. We analyzed the chemical properties of cell wall α-1,3-glucan from the agsAOE and agsBOE strains. The peak molecular mass of α-1,3-glucan from the agsAOE strain (1,480 ± 80 kDa) was much larger than that from the wild type (147 ± 52 kDa) and agsBOE (372 ± 47 kDa); however, the peak molecular mass of repeating subunits in α-1,3-glucan was almost the same (after Smith degradation: agsAOE, 41.6 ± 5.8 kDa; agsBOE, 38.3 ± 3.0 kDa). We also analyzed localization of α-1,3-glucan in the cell wall of the two strains by fluorescent labeling with α-1,3-glucan-binding domain–fused GFP (AGBD-GFP). α-1,3-Glucan of the agsBOE cells was clearly located in the outermost layer, whereas weak labeling was detected in the agsAOE cells. However, the agsAOE cells treated with β-1,3-glucanase were clearly labeled with AGBD-GFP. These observations suggest that β-1,3-glucan covered most of α-1,3-glucan synthesized by AgsA, although a small amount of α-1,3-glucan was still present in the outer layer. We also constructed a strain with disruption of the amyG gene, which encodes an intracellular α-amylase that synthesizes α-1,4-glucooligosaccharide as a primer for α-1,3-glucan biosynthesis. In this strain, the hyphal pellets and peak molecular mass of α-1,3-glucan (94.5 ± 1.4 kDa) were smaller than in the wild-type strain, and α-1,3-glucan was still labeled with AGBD-GFP in the outermost layer. Overall, these results suggest that hyphal pellet formation depends on the molecular mass and spatial localization of α-1,3-glucan as well as the amount of α-1,3-glucan in the cell wall of A. nidulans.
Collapse
Affiliation(s)
- Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Akira Yoshimi
- ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Shin Kasahara
- Department of Environmental Sciences, School of Food, Agricultural and Environmental Sciences, Miyagi University, Taiwa, Japan
| | - Asumi Sugahara
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Ami Koizumi
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Engineering, Yamagata University, Yonezawa, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Plant and Environmental New Resources, College of Life Sciences, Kyung Hee University, Seoul, South Korea
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Hakusan, Japan
| | - Keietsu Abe
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,ABE-Project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,Laboratory of Microbial Resources, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Cherdvorapong V, Fujiki H, Suyotha W, Takeda Y, Yano S, Takagi K, Wakayama M. Enzymatic and molecular characterization of α-1,3-glucanase (AglST2) from Streptomyces thermodiastaticus HF3-3 and its relation with α-1,3-glucanase HF65 (AglST1). J GEN APPL MICROBIOL 2018; 65:18-25. [PMID: 30012935 DOI: 10.2323/jgam.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Extracellular α-1,3-glucanase HF90 (AglST2), with a sodium dodecyl sulfate (SDS)-PAGE-estimated molecular mass of approximately 91 kDa, was homogenously purified from the culture filtrate of Streptomyces thermodiastaticus HF3-3. AglST2 showed a high homology with mycodextranase in an amino acid sequence and demonstrated specificity with an α-1,3-glycosidic linkage of homo α-1,3-glucan. It has been suggested that AglST2 may be a new type of α-1,3-glucanase. The optimum pH and temperature of AglST2 were pH 5.5 and 60°C, respectively. AglST2 action was significantly stimulated in the presence of 5-20% (w/v) NaCl, and 1 mM metal ions Mn2+ and Co2+. On the other hand, it was inhibited by 1 mM of Ag+, Cu2+, Fe2+ and Ni2+. Regarding the stability properties, AglST2 retained more than 80% of its maximum activity over a pH range of 5.0-7.0 at up to 60°C and in the presence of 0-20% (w/v) NaCl. Based on these results, the properties of AglST2 were comparable with those of AglST1, which had been previously purified and characterized from S. thermodiastaticus HF3-3 previously. The N-terminal amino acid sequence of AglST2 showed a good agreement with that of AglST1, suggesting that AglST1 was generated from AglST2 by proteolysis during cultivation. MALDI-TOF mass analysis suggested that AglST1 might be generated from AglST2 by the proteolytic removal of C-terminus polypeptide (approximately 20 kDa). Our investigation thus revealed the properties of AglST2, such as tolerance against high temperature, salts, and surfactants, which have promising industrial applications.
Collapse
Affiliation(s)
| | - Hidehisa Fujiki
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| | - Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University
| | - Yoichi Takeda
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | - Kazuyoshi Takagi
- Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| |
Collapse
|
23
|
Suyotha W, Fujiki H, Cherdvorapong V, Takagi K, Yano S, Wakayama M. A novel thermostable α-1,3-glucanase from Streptomyces thermodiastaticus HF 3-3. J GEN APPL MICROBIOL 2017; 63:296-304. [PMID: 28954965 DOI: 10.2323/jgam.2017.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Thermally stable α-1,3-glucanase HF65 was purified from culture filtrate of Streptomyces thermodiastaticus HF3-3. The molecular mass of this enzyme was estimated to be 65 kDa and 45.7 kDa by using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography, respectively. The purified enzyme retained more than 50% of maximum activity even after incubation at 65°C more than 2 h. Moreover, α-1,3-glucanase HF65 was stable in the presence of chemicals like SDS, benzethonium chloride, and sodium fluoride at a concentration of 1%. The enzyme also exhibited salt tolerance at a concentration up to 20%. The observed stability of α-1,3-glucanase HF65 to salt and surfactants is a great advantage for its addition to commercial oral care products. Interestingly, the N-terminal amino acid sequence did not show any similarity to those of known α-1,3-glucanases, while the sequence of internal eight amino acid residues of this enzyme was homologous with those of mycodextranases. Nevertheless, the enzyme exhibited high specificity against α-1,3-glucan. According to these results, the enzyme purified from S. thermodiastaticus HF3-3 was classified as α-1,3-glucanase which was highly homologous to mycodextranase in amino acid sequence.
Collapse
Affiliation(s)
- Wasana Suyotha
- Biotechnology for Bioresource Utilization Laboratory, Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University
| | - Hidehisa Fujiki
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| | | | - Kazuyoshi Takagi
- Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University
| |
Collapse
|
24
|
Suyotha W, Yano S, Wakayama M. α-1,3-Glucanase: present situation and prospect of research. World J Microbiol Biotechnol 2016; 32:30. [PMID: 26748807 DOI: 10.1007/s11274-015-1977-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/20/2015] [Indexed: 11/29/2022]
Abstract
α-1,3-Glucanases hydrolyze α-1,3-glucan which is an insoluble linear α-1,3-linked homopolymer of glucose and these enzymes are classified into two families of glycoside hydrolases on the basis of amino acid sequence similarity; type-71 α-1,3-glucanases found in fungi and type-87 enzymes in bacteria. α-1,3-Glucan (also called 'mutan') is a major component of dental plaque formed by oral Streptococci and has important physiological roles in various fungal species, including as a component of cell walls, an endogenous carbon source for sexual development, and a virulent factor. Considering these backgrounds, α-1,3-glucanases have been investigated from the perspectives of applications to dental care and development of cell-wall lytic enzymes. Compared with information regarding other glycoside hydrolases such as amylases, cellulases, chitinases, and β-glucanases, there is limited biochemical and structural information available regarding α-1,3-glucanase. Further research on α-1,3-glucanases on enzyme application to dental care and biological control of pathogenic fungi is expected. In this mini-review, we briefly describe how α-1,3-glucanases are categorized and characterized and present our study findings regarding α-1,3-glucanase from Bacillus circulans KA-304. Furthermore, we briefly discuss potential future applications of α-1,3-glucanases.
Collapse
Affiliation(s)
- Wasana Suyotha
- Department of Industrial Biotechnology, Faculty of Agro-industry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
25
|
Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control: A review. Int J Biol Macromol 2015; 79:761-78. [PMID: 26047901 DOI: 10.1016/j.ijbiomac.2015.05.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Dental plaque is a highly diverse biofilm, which has an important function in maintenance of oral and systemic health but in some conditions becomes a cause of oral diseases. In addition to mechanical plaque removal, current methods of dental plaque control involve the use of chemical agents against biofilm pathogens, which however, given the complexity of the oral microbiome, is not sufficiently effective. Hence, there is a need for development of new anti-biofilm approaches. Polysaccharides, especially (1→3),(1→6)-α-D-glucans, which are key structural and functional constituents of the biofilm matrix, seem to be a good target for future therapeutic strategies. In this review, we have focused on (1→3)-α-glucanases, which can limit the cariogenic properties of the dental plaque extracellular polysaccharides. These enzymes are not widely known and have not been exhaustively described in literature.
Collapse
Affiliation(s)
- Małgorzata Pleszczyńska
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Janusz Szczodrak
- Department of Industrial Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| |
Collapse
|
26
|
Suyotha W, Yano S, Itoh T, Fujimoto H, Hibi T, Tachiki T, Wakayama M. Characterization of α-1,3-glucanase isozyme from Paenibacillus glycanilyticus FH11 in a new subgroup of family 87 α-1,3-glucanase. J Biosci Bioeng 2014; 118:378-85. [PMID: 24755402 DOI: 10.1016/j.jbiosc.2014.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 12/01/2022]
Abstract
Two α-1,3-glucanase isozymes, designated as α-1,3-glucanase 1 (Agl-FH1) and α-1,3-glucanase 2 (Agl-FH2), were purified from the culture medium of Paenibacillus glycanilyticus FH11. Agl-FH1 and Agl-FH2 exhibited similar characteristics such as optimal pH, pH stability, optimal temperature, thermostability, and molecular masses on SDS-PAGE. However, their hydrolysis products of α-1,3-glucan varied somewhat. Agl-FH1 hydrolyzed α-1,3-glucan into a mixture of maltotriose and maltotetraose, and maltotetraose was the major hydrolysis product of Agl-FH2. N-terminal amino acid sequence analysis and LC-MS/MS analysis of trypsin digested fragments revealed several differences between the amino acid sequences of Agl-FH1 and Agl-FH2. Genes of Agl-FH1 and Agl-FH2 were subcloned into an expression plasmid, and both enzymes were successfully expressed in Escherichia coli. The recombinant Agl-FH1 and Agl-FH2 exhibited the same enzymatic properties as those of each wild-type enzyme, and both of the recombinants showed the activity on the protoplast formation of Schizophyllum commune mycelia. A great diversity was detected in the C-terminal region of family 87 α-1,3-glucanases. Compared with Agl-FH2 which is highly sequence-related to the known α-1,3-glucanases, the C-terminal region of Agl-FH1 has only slight similarity to them (approximately 20% identity). Our analysis revealed that Agl-FH1 was the first member of a new subgroup of family 87 α-1,3-glucanases.
Collapse
Affiliation(s)
- Wasana Suyotha
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Sciences and Engineering, Yamagata University, Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takafumi Itoh
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hiroko Fujimoto
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takao Hibi
- Department of Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takashi Tachiki
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Mamoru Wakayama
- Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|