1
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
2
|
Comparative transcriptomic analysis of two Saccharopolyspora spinosa strains reveals the relationships between primary metabolism and spinosad production. Sci Rep 2021; 11:14779. [PMID: 34285307 PMCID: PMC8292330 DOI: 10.1038/s41598-021-94251-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/06/2021] [Indexed: 11/23/2022] Open
Abstract
Saccharopolyspora spinosa is a well-known actinomycete for producing the secondary metabolites, spinosad, which is a potent insecticides possessing both efficiency and safety. In the previous researches, great efforts, including physical mutagenesis, fermentation optimization, genetic manipulation and other methods, have been employed to increase the yield of spinosad to hundreds of folds from the low-yield strain. However, the metabolic network in S. spinosa still remained un-revealed. In this study, two S. spinosa strains with different spinosad production capability were fermented and sampled at three fermentation periods. Then the total RNA of these samples was isolated and sequenced to construct the transcriptome libraries. Through transcriptomic analysis, large numbers of differentially expressed genes were identified and classified according to their different functions. According to the results, spnI and spnP were suggested as the bottleneck during spinosad biosynthesis. Primary metabolic pathways such as carbon metabolic pathways exhibited close relationship with spinosad formation, as pyruvate and phosphoenolpyruvic acid were suggested to accumulate in spinosad high-yield strain during fermentation. The addition of soybean oil in the fermentation medium activated the lipid metabolism pathway, enhancing spinosad production. Glutamic acid and aspartic acid were suggested to be the most important amino acids and might participate in spinosad biosynthesis.
Collapse
|
3
|
Tao H, Zhang Y, Deng Z, Liu T. Strategies for Enhancing the Yield of the Potent Insecticide Spinosad in Actinomycetes. Biotechnol J 2018; 14:e1700769. [DOI: 10.1002/biot.201700769] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/19/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
| | - Yuchen Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 P. R. China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 P. R. China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education and Wuhan University School of Pharmaceutical Sciences; Wuhan 430071 P. R. China
- Hubei Engineering Laboratory for Synthetic Microbiology; Wuhan Institute of Biotechnology; Wuhan 430075 P. R. China
| |
Collapse
|
4
|
Tan GY, Deng K, Liu X, Tao H, Chang Y, Chen J, Chen K, Sheng Z, Deng Z, Liu T. Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in Streptomyces. ACS Synth Biol 2017; 6:995-1005. [PMID: 28264562 DOI: 10.1021/acssynbio.6b00330] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advent of the genomics era, heterologous gene expression has been used extensively as a means of accessing natural products (NPs) from environmental DNA samples. However, the heterologous production of NPs often has very low efficiency or is unable to produce targeted NPs. Moreover, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in native producers, especially in the cases of genome mining, it is also difficult to rationally and systematically engineer synthetic pathways to improved NPs biosynthetic efficiency. In this study, various strategies ranging from heterologous production of a NP to subsequent application of omics-guided synthetic modules optimization for efficient biosynthesis of NPs with complex structure have been developed. Heterologous production of spinosyn in Streptomyces spp. has been demonstrated as an example of the application of these approaches. Combined with the targeted omics approach, several rate-limiting steps of spinosyn heterologous production in Streptomyces spp. have been revealed. Subsequent engineering work overcame three of selected rate-limiting steps, and the production of spinosad was increased step by step and finally reached 1460 μg/L, which is about 1000-fold higher than the original strain S. albus J1074 (C4I6-M). These results indicated that the omics platform developed in this work was a powerful tool for guiding the rational refactoring of heterologous biosynthetic pathway in Streptomyces host. Additionally, this work lays the foundation for further studies aimed at the more efficient production of spinosyn in a heterologous host. And the strategy developed in this study is expected to become readily adaptable to highly efficient heterologous production of other NPs with complex structure.
Collapse
Affiliation(s)
- Gao-Yi Tan
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State
Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kunhua Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Xinhua Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Hui Tao
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yingying Chang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Jia Chen
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kai Chen
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zhi Sheng
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiangang Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
5
|
Dhakal D, Pokhrel AR, Jha AK, Thuan NH, Sohng JK. S
accharopolyspora
Species: Laboratory Maintenance and Enhanced Production of Secondary Metabolites. ACTA ACUST UNITED AC 2017; 44:10H.1.1-10H.1.13. [DOI: 10.1002/cpmc.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University Chungnam Republic of Korea
| | - Anaya Raj Pokhrel
- Department of Life Science and Biochemical Engineering, Sun Moon University Chungnam Republic of Korea
| | - Amit Kumar Jha
- Department of Life Science and Biochemical Engineering, Sun Moon University Chungnam Republic of Korea
| | - Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University Danang Vietnam
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University Chungnam Republic of Korea
- Department of BT‐Convergent Pharmaceutical Engineering, Sun Moon University Chungnam Republic of Korea
| |
Collapse
|
7
|
High Level of Spinosad Production in the Heterologous Host Saccharopolyspora erythraea. Appl Environ Microbiol 2016; 82:5603-11. [PMID: 27401975 DOI: 10.1128/aem.00618-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Spinosad, a highly effective insecticide, has an excellent environmental and mammalian toxicological profile. Global market demand for spinosad is huge and growing. However, after much effort, there has been almost no improvement in the spinosad yield from the original producer, Saccharopolyspora spinosa Here, we report the heterologous expression of spinosad using Saccharopolyspora erythraea as a host. The native erythromycin polyketide synthase (PKS) genes in S. erythraea were replaced by the assembled spinosad gene cluster through iterative recombination. The production of spinosad could be detected in the recombinant strains containing the whole biosynthesis gene cluster. Both metabolic engineering and UV mutagenesis were applied to further improve the yield of spinosad. The final strain, AT-ES04PS-3007, which could produce spinosad with a titer of 830 mg/liter, has significant potential in industrial applications. IMPORTANCE This work provides an innovative and promising way to improve the industrial production of spinosad. At the same time, it also describes a successful method of heterologous expression for target metabolites of interest by replacing large gene clusters.
Collapse
|