1
|
Buetti-Dinh A, Ruinelli M, Czerski D, Scapozza C, Martignier A, Roman S, Caminada A, Tonolla M. Geochemical and metagenomics study of a metal-rich, green-turquoise-coloured stream in the southern Swiss Alps. PLoS One 2021; 16:e0248877. [PMID: 33784327 PMCID: PMC8009434 DOI: 10.1371/journal.pone.0248877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/07/2021] [Indexed: 12/02/2022] Open
Abstract
The Swiss Alpine environments are poorly described from a microbiological perspective. Near the Greina plateau in the Camadra valley in Ticino (southern Swiss Alps), a green-turquoise-coloured water spring streams off the mountain cliffs. Geochemical profiling revealed naturally elevated concentrations of heavy metals such as copper, lithium, zinc and cadmium, which are highly unusual for the geomorphology of the region. Of particular interest, was the presence of a thick biofilm, that was revealed by microscopic analysis to be mainly composed of Cyanobacteria. A metagenome was further assembled to detail the genes found in this environment. A multitude of genes for resistance/tolerance to high heavy metal concentrations were indeed found, such as, various transport systems, and genes involved in the synthesis of extracellular polymeric substances (EPS). EPS have been evoked as a central component in photosynthetic environments rich in heavy metals, for their ability to drive the sequestration of toxic, positively-charged metal ions under high regimes of cyanobacteria-driven photosynthesis. The results of this study provide a geochemical and microbiological description of this unusual environment in the southern Swiss Alps, the role of cyanobacterial photosynthesis in metal resistance, and the potential role of such microbial community in bioremediation of metal-contaminated environments.
Collapse
Affiliation(s)
- Antoine Buetti-Dinh
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- * E-mail: (ABD); (MT)
| | - Michela Ruinelli
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Dorota Czerski
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Cristian Scapozza
- Institute of Earth Sciences, University of Applied Sciences of Southern Switzerland (SUPSI), Trevano, Canobbio, Switzerland
| | - Agathe Martignier
- Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | - Samuele Roman
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
| | - Annapaola Caminada
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
| | - Mauro Tonolla
- Laboratory of Applied Microbiology (LMA), Department of Environment, Constructions and Design (DACD), University of Applied Sciences of Southern Switzerland (SUPSI), Bellinzona, Switzerland
- Alpine Biology Center Foundation, Bellinzona, Switzerland
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (ABD); (MT)
| |
Collapse
|
2
|
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 2004; 50:521-77. [PMID: 15467782 DOI: 10.1139/w04-035] [Citation(s) in RCA: 267] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S 23000, Mexico.
| | | | | |
Collapse
|