1
|
Liu X, Gilbert RG. Normal and abnormal glycogen structure - A review. Carbohydr Polym 2024; 338:122195. [PMID: 38763710 DOI: 10.1016/j.carbpol.2024.122195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/21/2024]
Abstract
Glycogen, a complex branched glucose polymer, is found in animals and bacteria, where it serves as an energy storage molecule. It has linear (1 → 4)-α glycosidic bonds between anhydroglucose monomer units, with branch points connected by (1 → 6)-α bonds. Individual glycogen molecules are referred to as β particles. In organs like the liver and heart, these β particles can bind into larger aggregate α particles, which exhibit a rosette-like morphology. The mechanisms and bonding underlying the aggregation process are not fully understood. For example, mammalian liver glycogen has been observed to be molecularly fragile under certain conditions, such as glycogen from diabetic livers fragmenting when exposed to dimethyl sulfoxide (DMSO), while glycogen from healthy livers is much less fragile; this indicates some difference, as yet unknown, in the bonding between β particles in healthy and diabetic glycogen. This fragility may have implications for blood sugar regulation, especially in pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory, and Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations (QAAFI), The University of Queensland, QLD 4072, Australia.
| |
Collapse
|
2
|
Park SD, Al Mijan M, Kwon TE, Lim TG, Yoo SH. Characterization and applications of biomacromolecule structurally similar to glycogen as a dispersion aid and skin protection agent. Int J Biol Macromol 2024; 265:130667. [PMID: 38453106 DOI: 10.1016/j.ijbiomac.2024.130667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Glycogen is a naturally occurring or metabolically synthesized biological macromolecule found in a wide range of living organisms, including animals, microorganisms, and even plants. However, naturally sourced glycogen poses challenges for industrial use. This study focused on a biological macromolecule referred to as glycogen-like particles (GLPs), detailing the production methods and biological properties of these particles. In vitro enzymatic production of GLPs was successfully achieved. GLPs synthesized through a simultaneous enzymatic reaction using sucrose had significant changes in their structure and functionality based on the branching enzyme (BE) to amylosucrase (ASase) ratio. As this ratio increased, the GLPs developed higher molecular weights and greater density, solubility, and branching degree while reducing size and turbidity. Structural changes in these enzymes were not observed beyond a critical BE/ASase ratio. Uniformly dispersed curcumin powder was generated in 50 % (w/v) aqueous GLP solution, and the GLPs were non-toxic to human skin keratinocytes at a concentration of 2.5 mg/mL. GLPs with lower branching inhibited tyrosinase activity and melanin synthesis, while those with more long chains displayed effective UV-blocking. By manipulating the BE/ASase ratio, GLPs were shown to display diverse chemical structures and physical characteristics, suggesting their potential application in the food and cosmetics industries.
Collapse
Affiliation(s)
- Sang-Dong Park
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mohammad Al Mijan
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tae-Eun Kwon
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Tae-Gyu Lim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.
| |
Collapse
|
3
|
Chen L, Zhao N, McClements DJ, Hamaker BR, Miao M. Advanced dendritic glucan-derived biomaterials: From molecular structure to versatile applications. Compr Rev Food Sci Food Saf 2023; 22:4107-4146. [PMID: 37350042 DOI: 10.1111/1541-4337.13201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
There is considerable interest in the development of advanced biomaterials with improved or novel functionality for diversified applications. Dendritic glucans, such as phytoglycogen and glycogen, are abundant biomaterials with highly branched three-dimensional globular architectures, which endow them with unique structural and functional attributes, including small size, large specific surface area, high water solubility, low viscosity, high water retention, and the availability of numerous modifiable surface groups. Dendritic glucans can be synthesized by in vivo biocatalysis reactions using glucosyl-1-phosphate as a substrate, which can be obtained from plant, animal, or microbial sources. They can also be synthesized by in vitro methods using sucrose or starch as a substrate, which may be more suitable for large-scale industrial production. The large numbers of hydroxyl groups on the surfaces of dendritic glucan provide a platform for diverse derivatizations, including nonreducing end, hydroxyl functionalization, molecular degradation, and conjugation modifications. Due to their unique physicochemical and functional attributes, dendritic glucans have been widely applied in the food, pharmaceutical, biomedical, cosmetic, and chemical industries. For instance, they have been used as delivery systems, adsorbents, tissue engineering scaffolds, biosensors, and bioelectronic components. This article reviews progress in the design, synthesis, and application of dendritic glucans over the past several decades.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ningjing Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - David J McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, Indiana, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Li Y, Zhang C, Feng L, Shen Q, Liu F, Jiang X, Pang B. Application of natural polysaccharides and their novel dosage forms in gynecological cancers: therapeutic implications from the diversity potential of natural compounds. Front Pharmacol 2023; 14:1195104. [PMID: 37383719 PMCID: PMC10293794 DOI: 10.3389/fphar.2023.1195104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Cancer is one of the most lethal diseases. Globally, the number of cancers is nearly 10 million per year. Gynecological cancers (for instance, ovarian, cervical, and endometrial), relying on hidden diseases, misdiagnoses, and high recurrence rates, have seriously affected women's health. Traditional chemotherapy, hormone therapy, targeted therapy, and immunotherapy effectively improve the prognosis of gynecological cancer patients. However, with the emergence of adverse reactions and drug resistance, leading to the occurrence of complications and poor compliance of patients, we have to focus on the new treatment direction of gynecological cancers. Because of the potential effects of natural drugs in regulating immune function, protecting against oxidative damage, and improving the energy metabolism of the body, natural compounds represented by polysaccharides have also attracted extensive attention in recent years. More and more studies have shown that polysaccharides are effective in the treatment of various tumors and in reducing the burden of metastasis. In this review, we focus on the positive role of natural polysaccharides in the treatment of gynecologic cancer, the molecular mechanisms, and the available evidence, and discuss the potential use of new dosage forms derived from polysaccharides in gynecologic cancer. This study covers the most comprehensive discussion on applying natural polysaccharides and their novel preparations in gynecological cancers. By providing complete and valuable sources of information, we hope to promote more effective treatment solutions for clinical diagnosis and treatment of gynecological cancers.
Collapse
Affiliation(s)
- Yi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Feng
- College of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- International Medical Department of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Jin SH, Kwon TE, Kang JU, Yoo SH, Chang PS, Yoo SH. Production of branched glucan polymer by a novel thermostable branching enzyme of Bifidobacterium thermophilum via one-pot biosynthesis containing a dual enzyme system. Carbohydr Polym 2023; 309:120646. [PMID: 36906355 DOI: 10.1016/j.carbpol.2023.120646] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Glycogen-like particles (GLPs) are applied in food, pharmaceutical, and cosmetics. The large-scale production of GLPs is limited by their complicated multi-step enzymic processes. In this study, GLPs were produced in a one-pot dual-enzyme system using Bifidobacterium thermophilum branching enzyme (BtBE) and Neisseria polysaccharea amylosucrase (NpAS). BtBE showed excellent thermal stability (half-life of 1732.9 h at 50 °C). Substrate concentration was the most influential factor during GLPs production in this system: GLPs yield and [sucrose]ini decreased from 42.4 % to 17.4 % and 0.3 to 1.0 M, respectively. Molecular weight and apparent density of GLPs decreased significantly with increasing [sucrose]ini. Regardless of the [sucrose]ini, the DP 6 of branch chain length was predominantly occupied. GLP digestibility increased with increasing [sucrose]ini, indicating that the degree of GLP hydrolysis may be negatively related to its apparent density. This one-pot biosynthesis of GLPs using a dual-enzyme system could be useful for the development of industrial processes.
Collapse
Affiliation(s)
- Seong-Ho Jin
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Eun Kwon
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| | - Jeon-Uk Kang
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Sun-Hwa Yoo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
6
|
Li X, Wang Y, Wu J, Jin Z, Dijkhuizen L, Svensson B, Bai Y. Designing starch derivatives with desired structures and functional properties via rearrangements of glycosidic linkages by starch-active transglycosylases. Crit Rev Food Sci Nutr 2023; 64:8265-8278. [PMID: 37051937 DOI: 10.1080/10408398.2023.2198604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Modification of starch by transglycosylases from glycoside hydrolase families has attracted much attention recently; these enzymes can produce starch derivatives with novel properties, i.e. processability and functionality, employing highly efficient and safe methods. Starch-active transglycosylases cleave starches and transfer linear fragments to acceptors introducing α-1,4 and/or linear/branched α-1,6 glucosidic linkages, resulting in starch derivatives with excellent properties such as complexing and resistance to digestion characteristics, and also may be endowed with new properties such as thermo-reversible gel formation. This review summarizes the effects of variations in glycosidic linkage composition on structure and properties of modified starches. Starch-active transglycosylases are classified into 4 groups that form compounds: (1) in cyclic with α-1,4 glucosidic linkages, (2) with linear chains of α-1,4 glucosidic linkages, (3) with branched α-1,6 glucosidic linkages, and (4) with linear chains of α-1,6 glucosidic linkages. We discuss potential processability and functionality of starch derivatives with different linkage combinations and structures. The changes in properties caused by rearrangements of glycosidic linkages provide guidance for design of starch derivatives with desired structures and properties, which promotes the development of new starch products and starch processing for the food industry.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lubbert Dijkhuizen
- CarbExplore Research B.V, Groningen, The Netherlands
- Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Liu J, Zhang J, Feng J, Tang C, Yan M, Zhou S, Chen W, Wang W, Liu Y. Multiple Fingerprint-Activity Relationship Assessment of Immunomodulatory Polysaccharides from Ganoderma lucidum Based on Chemometric Methods. Molecules 2023; 28:molecules28072913. [PMID: 37049676 PMCID: PMC10096448 DOI: 10.3390/molecules28072913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Polysaccharides with molecular weights ranging from 1.75 × 103 to 1.14 × 104 g/mol were obtained from the fruit bodies of Ganoderma lucidum. The multiple fingerprints and macrophage immunostimulatory activity of these fractions were analyzed as well as the fingerprint-activity relationship. The correlation analysis of molecular weight and immune activity demonstrated that polysaccharides with molecular weights of 4.27 × 103~5.27 × 103 and 1 × 104~1.14 × 104 g/mol were the main active fractions. Moreover, the results showed that galactose, mannose, and glucuronic acid were positively related to immunostimulatory activity. Additionally, partial least-squares regression and grey correlation degree analyses indicated that three peaks (P2, P3, P8) in the oligosaccharide fragment fingerprint significantly affected the immune activity of the polysaccharides. Hence, these ingredients associated with activity could be considered as markers to assess Ganoderma lucidum polysaccharides and their related products, and the study also provides a reference for research on the spectrum-effect relationship of polysaccharides in the future.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingsong Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Jie Feng
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Chuanhong Tang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Mengqiu Yan
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Shuai Zhou
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wanchao Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Wenhan Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, Shanghai 201403, China
| |
Collapse
|
8
|
Yang W, Su L, Wang L, Wu J, Chen S. Alpha-glucanotransferase from the glycoside hydrolase family synthesizes α(1–6)-linked products from starch: Features and synthesis pathways of the products. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Zhang M, Qin H, An R, Zhang W, Liu J, Yu Q, Liu W, Huang X. Isolation, purification, structural characterization and antitumor activities of a polysaccharide from Lilium davidii var. unicolor Cotton. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Liu J, Wang Y, Li X, Jin Z, Svensson B, Bai Y. Effect of Starch Primers on the Fine Structure of Enzymatically Synthesized Glycogen-like Glucan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6202-6212. [PMID: 35549341 DOI: 10.1021/acs.jafc.2c00152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glycogen-like glucan (GnG) is a unique hyperbranched polysaccharide nanoparticle which is drawing increasing attention due to its biodegradability and abundant short branches that can be functionalized. Because starch and GnG are both composed of glucose residues and have similar glucosidic bonds, GnG could be fabricated by sucrose phosphorylase, α-glucan phosphorylase, and branching enzymes from starch primers and sucrose. In this study, high-amylose starch, normal starch, and waxy corn starch were used as primers to synthesize GnG, and their impact on the fine structure of GnG was investigated. Structural analysis indicated that with increasing content of amylopectin in the starch primer, the proportion of short chains in GnG decreased, and the degree of β-amylolysis and α-amylolysis was enhanced. Amylose in the primer contributed to a compact and homogeneous structure of GnG, while amylopectin triggered the formation of branch points with a more open distribution. These findings provide a new strategy for regulating the fine structure of GnG.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaoxiao Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Research Laboratory for Starch Related Enzyme at Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Xu D, Liu J, Zheng W, Gao Q, Gao Y, Leng X. Identification of Polysaccharides From Dipsacus asperoides and Their Effects on Osteoblast Proliferation and Differentiation in a High-Glucose Environment. Front Pharmacol 2022; 13:851956. [PMID: 35401194 PMCID: PMC8986998 DOI: 10.3389/fphar.2022.851956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Polysaccharides (DAI-1 and DAI-2) from Dipsacus asperoides (D. asperoides) were obtained using mixed-bed ion exchange resin and Sephadex G-50 column chromatography following which their properties, structures, and activities were investigated. The results showed that DAI-1 and DAI-2 were homogeneous in nature, with glucose the only constituent, and had molecular masses of 17 and 4 kDa, respectively. Methylation analysis indicated that the backbones of DAI-1 and DAI-2 were mainly composed of (1→6)-linked glucose residues. DAI-1 possessed a small number of side chains and a branch point of (1→3, 6)-glucose, while DAI-2 lacked branching. Activity assays demonstrated that exposing osteoblasts to different DAI-1 concentrations (25, 50, or 100 μg/mL) in a high-glucose environment induced cell proliferation and led to a significant increase in bone morphogenetic protein 2 (BMP-2) and runt-related transcription factor 2 (Runx2) expressions at both the mRNA and protein levels. Moreover, DAI-1 treatment significantly increased alkaline phosphatase (ALP) and osteocalcin (OCN) activities in osteoblasts. Combined, our results suggested that DAI-1 may promote osteoblast proliferation and differentiation in a high-glucose environment.
Collapse
Affiliation(s)
- Duoduo Xu
- Country School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Liu
- Country School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Zheng
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Qipin Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Gao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyang Leng, ; Yang Gao,
| | - Xiangyang Leng
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyang Leng, ; Yang Gao,
| |
Collapse
|
12
|
Liu J, Bai Y, Ji H, Wang Y, Jin Z, Svensson B. Controlling the Fine Structure of Glycogen-like Glucan by Rational Enzymatic Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14951-14960. [PMID: 34847321 DOI: 10.1021/acs.jafc.1c06531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glycogen-like glucan (GnG), a hyperbranched glucose polymer, has been receiving increasing attention to generate synthetic polymers and nanoparticles. Importantly, different branching patterns strongly influence the functionality of GnG. To uncover ways of obtaining different GnG branching patterns, a series of GnG with radius from 22.03 to 27.06 nm were synthesized using sucrose phosphorylase, α-glucan phosphorylase (GP), and branching enzyme (BE). Adjusting the relative activity ratio of GP and BE (GP/BE) made the molecular weight (MW) distribution of intermediate GnG products follow two different paths. At a low GP/BE, the GnG developed from "small to large" during the synthetic process, with the MW increasing from 6.15 × 106 to 1.21 × 107 g/mol, and possessed a compact structure. By contrast, a high GP/BE caused the "large to small" model, with the MW reduction of GnG from 1.62 × 107 to 1.21 × 107 g/mol, and created a loose external structure. The higher GP activity promoted the elongation of external chains and restrained chain transfer by the BE to the inner zone of GnG, which would modulate the loose-tight structure of GnG. These findings provide new useful insights into the construction of structurally well-defined nanoparticles.
Collapse
Affiliation(s)
- Jialin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuxiang Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanli Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Birte Svensson
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department of Biotechnology and Biomedicine, Enzyme and Protein Chemistry, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
13
|
Fractionation, physicochemical and structural characterization of polysaccharides from barley water-soluble fiber. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
14
|
Huang G, Huang S. The structure–activity relationships of natural glucans. Phytother Res 2020; 35:2890-2901. [DOI: 10.1002/ptr.6995] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| | - Shiyu Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry Chongqing Normal University Chongqing China
| |
Collapse
|
15
|
Yoshioka Y, Inoue M, Yoshioka H, Kitakaze T, Furuyashiki T, Abe N, Ashida H. Enzymatically synthesized glycogen inhibited degranulation and inflammatory responses through stimulation of intestine. J Clin Biochem Nutr 2020; 67:67-73. [PMID: 32801471 PMCID: PMC7417801 DOI: 10.3164/jcbn.20-33] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The patients of type I allergic diseases were increased in the developed countries. Recently, many studies have focused on food factors with anti-allergic activities. Enzymatically synthesized glycogen, a polysaccharide with a multi-branched α-1,4 and α-1,6 linkages, is a commercially available product from natural plant starch, and has immunostimulation activity. However, effect of enzymatically synthesized glycogen on the anti-allergic activity was unclear yet. In this study, we investigated that enzymatically synthesized glycogen inhibited allergic and inflammatory responses using a co-culture system consisting of Caco-2 and RBL-2H3 cells. Enzymatically synthesized glycogen inhibited antigen-induced β-hexosaminidase release and production of TNF-α and IL-6 in RBL-2H3 cells in the co-culture system. Furthermore, enzymatically synthesized glycogen inhibited antigen-induced phosphorylation of tyrosine kinases, phospholipase C γ1/2, mitogen-activated protein kinases and Akt. Anti-allergic and anti-inflammatory activities of enzymatically synthesized glycogen were indirect action through stimulating Caco-2 cells, but not by the direct interaction with RBL-2H3 cells, because enzymatically synthesized glycogen did not permeate Caco-2 cells. These findings suggest that enzymatically synthesized glycogen is an effective food ingredient for prevention of type I allergy through stimulating the intestinal cells.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women's University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan.,Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Masako Inoue
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hiroko Yoshioka
- Department of Food Science and Nutrition, School of Human Environmental Sciences, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya, Hyogo 663-8558, Japan
| | - Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Naoki Abe
- Department of Nutritional Science and Food Safety, Faculty of Applied Science, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
16
|
Kitakaze T, Yoshioka Y, Furuyashiki T, Ashida H. Enzymatically synthesized glycogen protects inflammation induced by urban particulate matter in normal human epidermal keratinocytes. J Clin Biochem Nutr 2020; 67:29-35. [PMID: 32801466 PMCID: PMC7417792 DOI: 10.3164/jcbn.20-43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022] Open
Abstract
Urban particulate matters (PM) exposure is significantly correlated with extrinsic skin aging signs and skin cancer incidence. PM contains polycyclic aromatic hydrocarbons, and they act as the agonists of aryl hydrocarbon receptor (AhR). Activation of AhR promotes generation of intracellular reactive oxygen species (ROS) and inflammation. Enzymatically synthesized glycogen (ESG), which is synthesized from starch, possesses various functions, such as anti-tumor, anti-obesity and antioxidant. However, the effects of ESG on PM-induced skin inflammation remain unclear. In this study, we investigated whether ESG has a protective effect on PM-induced oxidative stress and inflammation in human epidermal keratinocytes. ESG inhibited PM-induced expression of inflammatory cytokines IL6, TNFA and PTGS2. ESG also inhibited PM-induced phosphorylation of MAPKs and ROS accumulation. However, ESG had no effect on PM-induced expression of CYP1A1, one of the target proteins of AhR. On the other hand, ESG increased nuclear translocation of Nrf2 and expression of antioxidant proteins, HO-1 and NQO1. These results suggest that ESG suppressed PM-induced inflammation by decreasing ROS accumulation through the Nrf2 pathway.
Collapse
Affiliation(s)
- Tomoya Kitakaze
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasukiyo Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
17
|
Yoshioka Y, Kitakaze T, Mitani T, Furuyashiki T, Ashida H. Enzymatically synthesized glycogen prevents ultraviolet B-induced cell damage in normal human epidermal keratinocytes. J Clin Biochem Nutr 2020; 67:36-42. [PMID: 32801467 PMCID: PMC7417806 DOI: 10.3164/jcbn.20-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enzymatically synthesized glycogen is a product from starch. Enzymatically synthesized glycogen has been reported to possess various health beneficial effects such as anti-oxidative and anti-inflammatory effects. In this study, we investigated the effect of enzymatically synthesized glycogen on ultraviolet B-induced oxidative stress and apoptosis in normal human epidermal keratinocytes. Treatment with enzymatically synthesized glycogen suppressed ultraviolet B-induced reactive oxygen species, caspase-3 activity, and DNA fragmentation in normal human epidermal keratinocytes. Furthermore, enzymatically synthesized glycogen increased in the expression level of heme oxygenase-1, NAD(P)H: quinone oxidoreductase 1, and NF-E2-related factor 2, a transcriptional factor for heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1. Although enzymatically synthesized glycogen did not increase in its mRNA expression level of NF-E2-related factor 2, enzymatically synthesized glycogen retained its protein degradation. Knockdown of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 canceled enzymatically synthesized glycogen-suppressed reactive oxygen species accumulation in normal human epidermal keratinocytes. It is, therefore, concluded that enzymatically synthesized glycogen inhibited ultraviolet B-induced oxidative stress through increasing the expression level of heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1 through the NF-E2-related factor 2 pathway in normal human epidermal keratinocytes.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Department of Clinical Nutrition and Dietetics, Faculty of Clinical Nutrition and Dietetics, Konan Women’s University, 6-2-23 Morikita-machi, Higashinada-ku, Kobe 658-0001, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 651-8501, Japan
| | - Tomoya Kitakaze
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 651-8501, Japan
| | - Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 651-8501, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 651-8501, Japan
| |
Collapse
|
18
|
Besford QA, Cavalieri F, Caruso F. Glycogen as a Building Block for Advanced Biological Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904625. [PMID: 31617264 DOI: 10.1002/adma.201904625] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Biological nanoparticles found in living systems possess distinct molecular architectures and diverse functions. Glycogen is a unique biological polysaccharide nanoparticle fabricated by nature through a bottom-up approach. The biocatalytic synthesis of glycogen has evolved over time to form a nanometer-sized dendrimer-like structure (20-150 nm) with a highly branched surface and a dense core. This makes glycogen markedly different from other natural linear or branched polysaccharides and particularly attractive as a platform for biomedical applications. Glycogen is inherently biodegradable, nontoxic, and can be functionalized with diverse surface and internal motifs for enhanced biofunctional properties. Recently, there has been growing interest in glycogen as a natural alternative to synthetic polymers and nanoparticles in a range of applications. Herein, the recent literature on glycogen in the material-based sciences, including its use as a constituent in biodegradable hydrogels and fibers, drug delivery vectors, tumor targeting and penetrating nanoparticles, immunomodulators, vaccine adjuvants, and contrast agents, is reviewed. The various methods of chemical functionalization and physical assembly of glycogen nanoparticles into multicomponent nanodevices, which advance glycogen toward a functional therapeutic nanoparticle from nature and back again, are discussed in detail.
Collapse
Affiliation(s)
- Quinn A Besford
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Francesca Cavalieri
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
19
|
Ban X, Dhoble AS, Li C, Gu Z, Hong Y, Cheng L, Holler TP, Kaustubh B, Li Z. Bacterial 1,4-α-glucan branching enzymes: characteristics, preparation and commercial applications. Crit Rev Biotechnol 2020; 40:380-396. [DOI: 10.1080/07388551.2020.1713720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaofeng Ban
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Abhishek S. Dhoble
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| | - Tod P. Holler
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Bhalerao Kaustubh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China
| |
Collapse
|
20
|
Kargar F, Savardashtaki A, Mortazavi M, Mahani MT, Amani AM, Ghasemi Y, Nezafat N. In SilicoStudy of 1, 4 Alpha Glucan Branching Enzyme and Substrate Docking Studies. CURR PROTEOMICS 2020. [DOI: 10.2174/1570164616666190401204009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The 1,4-alpha-glucan branching protein (GlgB) plays an important role in the glycogen biosynthesis and the deficiency in this enzyme has resulted in Glycogen storage disease and accumulation of an amylopectin-like polysaccharide. Consequently, this enzyme was considered a special topic in clinical and biotechnological research. One of the newly introduced GlgB belongs to the Neisseria sp. HMSC071A01 (Ref.Seq. WP_049335546). For in silico analysis, the 3D molecular modeling of this enzyme was conducted in the I-TASSER web server.Methods:For a better evaluation, the important characteristics of this enzyme such as functional properties, metabolic pathway and activity were investigated in the TargetP software. Additionally, the phylogenetic tree and secondary structure of this enzyme were studied by Mafft and Prabi software, respectively. Finally, the binding site properties (the maltoheptaose as substrate) were studied using the AutoDock Vina.Results:By drawing the phylogenetic tree, the closest species were the taxonomic group of Betaproteobacteria. The results showed that the structure of this enzyme had 34.45% of the alpha helix and 45.45% of the random coil. Our analysis predicted that this enzyme has a potential signal peptide in the protein sequence.Conclusion:By these analyses, a new understanding was developed related to the sequence and structure of this enzyme. Our findings can further be used in some fields of clinical and industrial biotechnology.
Collapse
Affiliation(s)
- Farzane Kargar
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Masoud Torkzadeh Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Science, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 71348- 14336, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies Shiraz University of Medical Sciences Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Wei Z, Chen G, Zhang P, Zhu L, Zhang L, Chen K. Rhizopus nigricans polysaccharide activated macrophages and suppressed tumor growth in CT26 tumor-bearing mice. Carbohydr Polym 2018; 198:302-312. [PMID: 30093003 DOI: 10.1016/j.carbpol.2018.06.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/03/2023]
Abstract
In this study, a homogeneous polysaccharide (RPS-1) was extracted from liquid-cultured mycelia of Rhizopus nigricans. The weight-average molecular weight of RPS-1 was 1.617 × 107 g/mol and structural characterization indicated that RPS-1 was a non-starch glucan which consisted of a backbone structure of (1→4)-linked α-d-glucopyranosyl residues substituted at the O-6 position with α-d-glucopyranosyl branches. RPS-1 stimulated the production of nitric oxide and tumor necrosis factor-α by triggering phosphorylation of mitogen-activated protein kinases and nuclear translocation of nuclear factor kappa B p65 in RAW 264.7 macrophage cells. Moreover, intragastric administration of RPS-1 improved the immune function of CT26 tumor-bearing mice and significantly inhibited the growth of transplanted tumor. In combination with 5-FU, RPS-1 enhanced antitumor activity of 5-FU and alleviated its toxicity on immune system. These findings suggested that RPS-1 has the potential for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhihong Wei
- Gynecology Department, First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Guochuang Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Lei Zhu
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Linan Zhang
- Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China; Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macro-molecules, School of Pharmacy, Wannan Medical College, Wuhu, China.
| |
Collapse
|
22
|
Mitani T, Yoshioka Y, Furuyashiki T, Yamashita Y, Shirai Y, Ashida H. Enzymatically synthesized glycogen inhibits colitis through decreasing oxidative stress. Free Radic Biol Med 2017; 106:355-367. [PMID: 28257879 DOI: 10.1016/j.freeradbiomed.2017.02.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/17/2017] [Accepted: 02/27/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases are a group of chronic inflammation conditions of the gastrointestinal tract. Disruption of the mucosal immune response causes accumulation of oxidative stress, resulting in the induction of inflammatory bowel disease. In this study, we investigated the effect of enzymatically synthesized glycogen (ESG), which is produced from starch, on dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in C57BL/6 mice. Oral administration of ESG suppressed DSS- and TNBS-induced shortening of large intestine in female mice and significant decreased DSS-induced oxidative stress and TNBS-induced pro-inflammatory cytokine expression in the large intestine. ESG increase in the expression levels of heme oxygenase-1 (HO-1) and NF-E2-related factor-2 (Nrf2), a transcription factor for HO-1 expressed in the large intestine. Furthermore, ESG-induced HO-1 and Nrf2 were expressed mainly in intestinal macrophages. ESG is considered to be metabolized to resistant glycogen (RG) during digestion with α-amylase in vivo. In mouse macrophage RAW264.7 cells, RG, but not ESG decreased 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced reactive oxygen species (ROS). Knockdown of Nrf2 inhibited RG-induced HO-1 expression and negated the decrease in AAPH-induced ROS brought about by RG. RG up-regulated the protein stability of Nrf2 to decrease the formation of Nrf2-Keap1 complexes. RG-induced phosphorylation of Nrf2 at Ser40 was suppressed by ERK1/2 and JNK inhibitors. Our data indicate that ESG, digested with α-amylase to RG, suppresses DSS- and TNBS-induced colitis by increasing the expression of HO-1 in the large intestine of mice. Furthermore, we demonstrate that RG induces HO-1 expression by promoting phosphorylation of Nrf2 at Ser40 through activation of the ERK1/2 and JNK cascade in macrophages.
Collapse
Affiliation(s)
- Takakazu Mitani
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan; Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 6578501, Japan
| | - Yasukiyo Yoshioka
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 6578501, Japan
| | | | - Yoko Yamashita
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan
| | - Yasuhito Shirai
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan
| | - Hitoshi Ashida
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 6578501, Japan.
| |
Collapse
|
23
|
Masuda Y, Nakayama Y, Tanaka A, Naito K, Konishi M. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor. PLoS One 2017; 12:e0173621. [PMID: 28278221 PMCID: PMC5344464 DOI: 10.1371/journal.pone.0173621] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
Maitake α-glucan, YM-2A, isolated from Grifola frondosa, has been characterized as a highly α-1,6-branched α-1,4 glucan. YM-2A has been shown to possess an anti-virus effect in mice; however, it does not directly inhibit growth of the virus in vitro, indicating that the anti-virus effect of YM-2A might be associated with modulation of the host immune system. In this study, we found that oral administration of YM-2A could inhibit tumor growth and improve survival rate in two distinct mouse models of colon-26 carcinoma and B16 melanoma. Orally administered YM-2A enhanced antitumor immune response by increasing INF-γ-expressing CD4+ and CD8+ cells in the spleen and INF-γ-expressing CD8+ cells in tumor-draining lymph nodes. In vitro study showed that YM-2A directly activated splenic CD11b+ myeloid cells, peritoneal macrophages and bone marrow-derived dendritic cells, but did not affect splenic CD11b- lymphocytes or colon-26 tumor cells. YM-2A is more slowly digested by pancreatic α-amylase than are amylopectin and rabbit liver glycogen, and orally administered YM-2A enhanced the expression of MHC class II and CD86 on dendritic cells and the expression of MHC class II on macrophages in Peyer’s patches. Furthermore, in vitro stimulation of YM-2A increased the expression of pro-inflammatory cytokines in Peyer’s patch CD11c+ cells. These results suggest that orally administered YM-2A can activate dendritic cells and macrophages in Peyer’s patches, inducing systemic antitumor T-cell response. Thus, YM-2A might be a candidate for an oral therapeutic agent in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
- * E-mail:
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Akihiro Tanaka
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Kenta Naito
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
24
|
Matsui-Yatsuhashi H, Furuyashiki T, Takata H, Ishida M, Takumi H, Kakutani R, Kamasaka H, Nagao S, Hirose J, Kuriki T. Qualitative and Quantitative Analyses of Glycogen in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1314-1319. [PMID: 28156103 DOI: 10.1021/acs.jafc.6b03644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.
Collapse
Affiliation(s)
- Hiroko Matsui-Yatsuhashi
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Takashi Furuyashiki
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hiroki Takata
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Miyuki Ishida
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hiroko Takumi
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Ryo Kakutani
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Hiroshi Kamasaka
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| | - Saeko Nagao
- Nagao Maternity Hospital , Terado-cho, Muko-shi, Kyoto 617-0002, Japan
| | - Junko Hirose
- Department of Food Science and Nutrition, School of Human Cultures, University of Shiga Prefecture , 2500 Hassaka-cho, Hikone-shi, Shiga 522-8533, Japan
| | - Takashi Kuriki
- Institute of Health Sciences, Ezaki Glico Company, Ltd. , 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan
| |
Collapse
|
25
|
Quispe-Salcedo A, Ida-Yonemochi H, Ohshima H. The effects of enzymatically synthesized glycogen on the pulpal healing process of extracted teeth following intentionally delayed replantation in mice. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Li X, Miao M, Jiang H, Xue J, Jiang B, Zhang T, Gao Y, Jia Y. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chem 2014; 164:502-9. [DOI: 10.1016/j.foodchem.2014.05.074] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/22/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
|
27
|
Kazłowski B, Ko YT. Reaction of phosphorylase-a with α-d-glucose 1-phosphate and maltodextrin acceptors to give products with degree of polymerization 6–89. Carbohydr Polym 2014; 106:209-16. [DOI: 10.1016/j.carbpol.2014.01.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/30/2022]
|
28
|
Ciric J, Petrovic DM, Loos K. Polysaccharide Biocatalysis: From Synthesizing Carbohydrate Standards to Establishing Characterization Methods. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201300801] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jelena Ciric
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Dejan M. Petrovic
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Katja Loos
- Department of Polymer Chemistry & Zernike Institute for Advanced Materials; University of Groningen; Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
29
|
Vannucci L, Krizan J, Sima P, Stakheev D, Caja F, Rajsiglova L, Horak V, Saieh M. Immunostimulatory properties and antitumor activities of glucans (Review). Int J Oncol 2013; 43:357-64. [PMID: 23739801 PMCID: PMC3775562 DOI: 10.3892/ijo.2013.1974] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/17/2013] [Indexed: 12/25/2022] Open
Abstract
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments.
Collapse
Affiliation(s)
- Luca Vannucci
- Laboratory of Immunotherapy, Department of Immunology and Gnotobiology, Institute of Microbiology, Academy of Sciences of Czech Republic, v.v.i., 142 20 Prague 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Grimaud F, Lancelon-Pin C, Rolland-Sabaté A, Roussel X, Laguerre S, Viksø-Nielsen A, Putaux JL, Guilois S, Buléon A, D’Hulst C, Potocki-Véronèse G. In Vitro Synthesis of Hyperbranched α-Glucans Using a Biomimetic Enzymatic Toolbox. Biomacromolecules 2013; 14:438-47. [DOI: 10.1021/bm301676c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Florent Grimaud
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil,
F-31077 Toulouse, France
- UMR792 Ingénierie des
Systèmes Biologiques et des Procédés, INRA, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400
Toulouse, France
| | - Christine Lancelon-Pin
- CERMAV-CNRS, BP 53, F-38041 Grenoble cedex 9, France
(affiliated with Université
Joseph Fourier, member of Institut de Chimie Moléculaire de
Grenoble and Institut Carnot PolyNat)
| | | | - Xavier Roussel
- UGSF, UMR 8576, Université Lille1, sciences et technologies, Bât. C9, F-59655
Villeneuve d’Ascq, France
| | - Sandrine Laguerre
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil,
F-31077 Toulouse, France
- UMR792 Ingénierie des
Systèmes Biologiques et des Procédés, INRA, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400
Toulouse, France
| | | | - Jean-Luc Putaux
- CERMAV-CNRS, BP 53, F-38041 Grenoble cedex 9, France
(affiliated with Université
Joseph Fourier, member of Institut de Chimie Moléculaire de
Grenoble and Institut Carnot PolyNat)
| | - Sophie Guilois
- UR1268 Biopolymères Interactions
Assemblages, INRA, F-44300 Nantes, France
| | - Alain Buléon
- UR1268 Biopolymères Interactions
Assemblages, INRA, F-44300 Nantes, France
| | - Christophe D’Hulst
- UGSF, UMR 8576, Université Lille1, sciences et technologies, Bât. C9, F-59655
Villeneuve d’Ascq, France
| | - Gabrielle Potocki-Véronèse
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil,
F-31077 Toulouse, France
- UMR792 Ingénierie des
Systèmes Biologiques et des Procédés, INRA, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400
Toulouse, France
| |
Collapse
|
31
|
Yasuda M, Furuyashiki T, Nakamura T, Kakutani R, Takata H, Ashida H. Immunomodulatory activity of enzymatically synthesized glycogen and its digested metabolite in a co-culture system consisting of differentiated Caco-2 cells and RAW264.7 macrophages. Food Funct 2013; 4:1387-93. [DOI: 10.1039/c3fo60035a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Takahashi H, Tahara Y, Sawada SI, Akiyoshi K. Cationic amphiphilic polysaccharide nanoballs: protein stabilization and intracellular delivery by nano-encapsulation. Biomater Sci 2013; 1:842-849. [DOI: 10.1039/c3bm00178d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Yoshida T, Takahashi K, Hattori M. Inhibiting or enhancing effect of sulfuric acid-treated wheat starch on antibody production induced by two types of adjuvant. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
34
|
Nakamura-Tsuruta S, Yasuda M, Nakamura T, Shinoda E, Furuyashiki T, Kakutani R, Takata H, Kato Y, Ashida H. Comparative analysis of carbohydrate-binding specificities of two anti-glycogen monoclonal antibodies using ELISA and surface plasmon resonance. Carbohydr Res 2012; 350:49-54. [DOI: 10.1016/j.carres.2011.12.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 12/26/2011] [Accepted: 12/30/2011] [Indexed: 12/01/2022]
|
35
|
Kakutani R, Adachi Y, Kajiura H, Takata H, Kuriki T, Ohno N. The effect of orally administered glycogen on anti-tumor activity and natural killer cell activity in mice. Int Immunopharmacol 2012; 12:80-7. [DOI: 10.1016/j.intimp.2011.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/16/2011] [Accepted: 10/27/2011] [Indexed: 11/29/2022]
|
36
|
Chen X, Cao D, Zhou L, Jin H, Dong Q, Yao J, Ding K. Structure of a polysaccharide from Gastrodia elata Bl., and oligosaccharides prepared thereof with anti-pancreatic cancer cell growth activities. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.06.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
In vitro synthesis of glycogen: the structure, properties, and physiological function of enzymatically-synthesized glycogen. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0053-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Takahashi H, Sawada SI, Akiyoshi K. Amphiphilic polysaccharide nanoballs: a new building block for nanogel biomedical engineering and artificial chaperones. ACS NANO 2011; 5:337-45. [PMID: 21138322 DOI: 10.1021/nn101447m] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Enzymatically synthesized glycogen (ESG), a highly branched (1→4)(1→6)-linked α-glucan, is a new monodisperse spherical hyperbranched nanoparticle (molecular weight, 10(6)-10(7); diameter, 20-30 nm), polysaccharide nanoball. Amphiphilic ESG nanoballs were synthesized by introducing a cholesterol group to enzymatically synthesized glycogen (CHESG). CHESG assembled into a structure containing a few molecules to form cluster nanogels (approximately 35 nm in diameter) in water. The cluster nanogels were dissociated by the addition of cyclodextrin (CD) to form a supramolecular CHESG-CD nanocomplex due to complexation with the cholesterol group and CD. The CHESG nanogel showed high capacity for complexation with proteins, and the CHESG-CD nanocomplex showed high chaperone-like activity for thermal stabilization of enzymes. CHESG has great potential to become a new building block for nanogel biomedical engineering and to act as an artificial chaperone for protein engineering.
Collapse
Affiliation(s)
- Haruko Takahashi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | |
Collapse
|
39
|
Furuyashiki T, Takata H, Kojima I, Kuriki T, Fukuda I, Ashida H. Metabolic fate of orally administered enzymatically synthesized glycogen in rats. Food Funct 2011; 2:183-9. [DOI: 10.1039/c0fo00171f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Kajiura H, Takata H, Kuriki T, Kitamura S. Structure and solution properties of enzymatically synthesized glycogen. Carbohydr Res 2010; 345:817-24. [DOI: 10.1016/j.carres.2010.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
|
41
|
Safety evaluation of an enzymatically-synthesized glycogen (ESG). Regul Toxicol Pharmacol 2010; 57:210-9. [PMID: 20197075 DOI: 10.1016/j.yrtph.2010.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 11/21/2022]
Abstract
An enzymatically-synthesized glycogen (ESG), intended for use as a food ingredient, was investigated for potential toxicity. ESG is synthesized in vitro from short-chain amylose by the co-operative action of branching enzyme and amylomaltase. In an acute toxicity study, oral administration of ESG to Sprague-Dawley rats at a dose of 2000 mg/kg body weight did not result in any signs of toxicity. ESG did not exhibit mutagenic activity in an in vitro bacterial reverse mutation assay. In a subchronic toxicity study, increased cecal weights noted in the mid- (10%) and high-dose (30%) animals are common findings in rodents fed excess amounts of carbohydrates that increase osmotic value of the cecal contents, and thus were considered a physiological rather than toxicological response. The hematological and histopathological effects observed in the high-dose groups were of no toxicological concern as they were secondary to the physiological responses resulting from the high carbohydrate levels in the test diets. The no-observed-adverse-effect level for ESG in rats was therefore established to be 30% in the diet (equivalent to approximately 18 and 21 g/kg body weight/day for male and female rats, respectively). These results support the safety of ESG as a food ingredient for human consumption.
Collapse
|
42
|
Kajiura H, Takata H, Akiyama T, Ueyama R, Kakutani R, Furuyashiki T, Kojima I, Takeda R, Kuriki T. A New Method for in vitro Glycogen Synthesis, and the Structure and Properties of the Synthesized Glycogen. J Appl Glycosci (1999) 2010. [DOI: 10.5458/jag.57.105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Kojima H, Akaki J, Nakajima S, Kamei K, Tamesada M. Structural analysis of glycogen-like polysaccharides having macrophage-activating activity in extracts of Lentinula edodes mycelia. J Nat Med 2009; 64:16-23. [DOI: 10.1007/s11418-009-0357-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|
44
|
Safety evaluation of highly-branched cyclic dextrin and a 1,4-alpha-glucan branching enzyme from Bacillus stearothermophilus. Regul Toxicol Pharmacol 2009; 55:281-90. [PMID: 19651182 DOI: 10.1016/j.yrtph.2009.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 11/20/2022]
Abstract
Highly-branched cyclic dextrin (HBCD), a dextrin food ingredient presently only used in Japan, was investigated for digestibility and potential toxicity. HBCD was readily hydrolyzed in vitro to maltose and maltotriose by human salivary and porcine pancreatic alpha-amylases. Incubation of HBCD with a rat intestinal homogenate, containing digestive enzymes, resulted in the formation of maltose, maltotriose, and maltotetraose, and with longer incubation times, resulted in the formation of glucose. In an acute toxicity study, Wistar rats orally administered a single-dose of 2000mg/kg body weight of HBCD did not display mortality or any signs or symptoms of toxicity or abnormalities upon necropsy. Transient loose stools were observed, but were resolved within 24h of HBCD administration, and therefore, were not considered as compound-specific adverse effects. In the Ames assay, HBCD was non-mutagenic with or without metabolic activation. Toxicity testing of the branching enzyme (BE) involved in the synthesis of HBCD showed that the BE also was not acutely toxic when orally administered to rats and was non-mutagenic in the mouse lymphoma assay. The results of this study demonstrate that HBCD is digested to normal and safe products of carbohydrate digestion, and therefore, support the safety of HBCD for human consumption.
Collapse
|
45
|
Kakutani R, Adachi Y, Kajiura H, Takata H, Ohno N, Kuriki T. Stimulation of macrophage by enzymatically synthesized glycogen: the relationship between structure and biological activity. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701804541] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Kajiura H, Kakutani R, Akiyama T, Takata H, Kuriki T. A novel enzymatic process for glycogen production. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701789411] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
The augmenting activity of 6-(methylsulfinyl)hexyl isothiocyanate on cellular glutathione levels is less sensitive to thiol compounds than its cytotoxic activity. Biosci Biotechnol Biochem 2009; 73:1419-21. [PMID: 19502751 DOI: 10.1271/bbb.80791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We analyzed the effects of thiol compounds on the biological activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC). Thiol compounds abolished the cytotoxic activity of 6-MITC, but did not abolish its activity augmenting cellular total glutathione levels and gamma-glutamylcysteine ligase gene expression. Thiol compounds might play an important role in the augmentation of several significant biological activities by overcoming the inherent limitations of 6-MITC.
Collapse
|
48
|
Takata H, Kajiura H, Furuyashiki T, Kakutani R, Kuriki T. Fine structural properties of natural and synthetic glycogens. Carbohydr Res 2009; 344:654-9. [DOI: 10.1016/j.carres.2009.01.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 12/16/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
49
|
|
50
|
Kakutani R, Adachi Y, Kajiura H, Takata H, Kuriki T, Ohno N. Relationship between structure and immunostimulating activity of enzymatically synthesized glycogen. Carbohydr Res 2007; 342:2371-9. [PMID: 17761154 DOI: 10.1016/j.carres.2007.07.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/27/2007] [Accepted: 07/31/2007] [Indexed: 11/19/2022]
Abstract
Glycogen acts as energy and carbon reserves in animal cells and in microorganisms. Although anti-tumor activity has recently been reported for shellfish glycogen and enzymatically synthesized glycogen, the activity of glycogen has not yet been fully clarified. We enzymatically prepared various sizes of glycogens with controlled structures to investigate the relationship between the structure and immunostimulating activity of glycogen. The results revealed that glycogens with a weight-average molecular weight (M(w)) of more than 10,000K hardly activated RAW264.7, a murine macrophage cell line, whereas glycogens of M(w) 5000K and 6500K strongly stimulated RAW264.7 in the presence of interferon-gamma (IFN-gamma), leading to augmented production of nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6). Comparing the fine structure of the glycogens, the average-number of chain length, as well as the exterior and the interior chain lengths of the glycogens, had minor correlation between active and less-active glycogen derivatives. The available evidence suggests that the macrophage-stimulating activity of glycogen is strictly related to its molecular weight rather than to any fine structural property.
Collapse
Affiliation(s)
- Ryo Kakutani
- Biochemical Research Laboratory, Ezaki Glico Co., Ltd, Nishiyodogawa-ku, Osaka 555-8502, Japan.
| | | | | | | | | | | |
Collapse
|