1
|
Gu L, Zhang R, Fan X, Wang Y, Ma K, Jiang J, Li G, Wang H, Fan F, Zhang X. Development of CRISPR/Cas9-Based Genome Editing Tools for Polyploid Yeast Cyberlindnera jadinii and Its Application in Engineering Heterologous Steroid-Producing Strains. ACS Synth Biol 2023; 12:2947-2960. [PMID: 37816156 DOI: 10.1021/acssynbio.3c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
In this study, a suite of efficient CRISPR/Cas9 tools was developed to overcome the genetic manipulation challenges posed by the polyploid genome of industrial yeast Cyberlindnera jadinii. The developed CRISPR/Cas9 system can achieve a 100% single-gene knockdown efficiency in strain NBRC0988. Moreover, the integration of a single exogenous gene into the target locus using a 50 bp homology arm achieved near-100% efficiency. The efficiency of simultaneous integration of three genes into the chromosome is strongly influenced by the length of the homology arm, with the highest integration efficiency of 62.5% obtained when selecting a homology arm of about 500 bp. By utilizing the CRISPR/Cas system, this study demonstrated the potential of C. jadinii in producing heterologous sterols. Through shake-flask fermentation, the engineered strains produced 92.1 and 81.8 mg/L of campesterol and cholesterol, respectively. Furthermore, the production levels of these two sterols were further enhanced through high-cell-density fed-batch fermentation in a 5 L bioreactor. The highest titer of campesterol reached 807 mg/L [biomass OD600 = 294, productivity of 6.73 mg/(L·h)]. The titer of cholesterol reached 1.52 g/L [biomass OD600 = 380, productivity of 9.06 mg/(L·h)], marking the first gram-scale production of steroidal compounds in C. jadinii.
Collapse
Affiliation(s)
- Lishan Gu
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Rongxin Zhang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Xuqian Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Yu Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Kaiyu Ma
- College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Avenue, TEDA, Tianjin 300457, P. R. China
| | - Jingjing Jiang
- College of Biotechnology and Food Science, Tianjin University of Commerce, 409 Glorious Road, Beichen District, Tianjin 300134, P. R. China
| | - Gen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, P. R. China
| | - Feiyu Fan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, P. R. China
| |
Collapse
|
2
|
Sarkar R, Sardar SK, Ghosal A, Das K, Saito-Nakano Y, Dutta S, Nozaki T, Ganguly S. Functional characterization of phospholipase B enzyme from Giardia lamblia. Exp Parasitol 2023; 253:108602. [PMID: 37619808 DOI: 10.1016/j.exppara.2023.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
The microaerotolarent amitochondriate protozoan Giardia lamblia causes Giardiasis and produces a unique enzyme called Phospholipase B (PLB) in contrast to higher eukaryotes. The enzyme is produced upon induction with oxidative (H2O2) stress, thus leading to prostaglandin E2 (PGE2) production. It exists in dimeric form, and its molecular weight is 56 kDa. This PLB was extracellularly cloned in the pET21d vector. The ORF is 1620 bp (Genbank accession no. -OM939681) long and codes for a protein 539 amino acid long, with a 15 amino acid long amino-terminal signal peptide. The highest enzyme activity of PLB was identified at pH 7.5 and 35 °C. This specific enzyme was also active at 50 °C pH 10, but activity was low. We also analyzed the expression of PLB protein in G. lamblia, which was significantly induced under increased oxidative stress.
Collapse
Affiliation(s)
- Rituparna Sarkar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sanjib Kumar Sardar
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Ajanta Ghosal
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Koushik Das
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India; Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, India
| | - Yumiko Saito-Nakano
- Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Kolkata, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sandipan Ganguly
- Division of Parasitology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
3
|
Enhancing Soluble Expression of Phospholipase B for Efficient Catalytic Synthesis of L-Alpha-Glycerylphosphorylcholine. Catalysts 2022. [DOI: 10.3390/catal12060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phospholipase B (PLB) harbors three distinct activities with broad substrate specificities and application fields. Its hydrolyzing of sn-1 and sn-2 acyl ester bonds enables it to catalyze the production of L-alpha-glycerylphosphorylcholine (L-α-GPC) from phosphatidylcholine (PC) without speed-limiting acyl migration. This work was intended to obtain high-level active PLB and apply it to establish an efficient system for L-α-GPC synthesis. PLB from Pseudomonas fluorescens was co-expressed with five different molecular chaperones, including trigger factor (Tf), GroEL-GroES (GroELS), DnaK-DnaJ-GrpE (DnaKJE), GroELS and DnaKJE, or GroELS and Tf or fused with maltose binding protein (MBP) in Escherichia coli BL21(DE3) to improve PLB expression. PLB with DnaKJE-assisted expression exhibited the highest catalytic activity. Further optimization of the expression conditions identified an optimal induction OD600 of 0.8, IPTG concentration of 0.3 mmol/L, induction time of 9 h, and temperature of 25 °C. The PLB activity reached a maximum of 524.64 ± 3.28 U/mg under optimal conditions. Subsequently, to establish an efficient PLB-catalyzed system for L-α-GPC synthesis, a series of organic-aqueous mixed systems and surfactant-supplemented aqueous systems were designed and constructed. Furthermore, the factors of temperature, reaction pH, metal ions, and substrate concentration were further systematically identified. Finally, a high yield of 90.50 ± 2.21% was obtained in a Span 60-supplemented aqueous system at 40 °C and pH 6.0 with 0.1 mmol/L of Mg2+. The proposed cost-effective PLB production and an environmentally friendly PLB-catalyzed system offer a candidate strategy for the industrial production of L-α-GPC.
Collapse
|
4
|
Sinde H, Patel P, Kikani KM, Kothari DR, Kikani BA. Inhibition of Phospholipase by Orlistat as an Alternate Therapy to Combat Opportunistic Mycosis Caused by C. albicans. Curr Microbiol 2021; 78:2071-2079. [PMID: 33811506 DOI: 10.1007/s00284-021-02476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/23/2021] [Indexed: 11/30/2022]
Abstract
Candida albicans is one of the most important etiological agents causing an opportunistic mycosis, candidiasis. In the past, it was perceived to be associated with immunocompromised patients only. However, it has now been reported with several clinical complications with varying severity. Additionally, increasing incidences of multiple drug resistance associated with the infections have complicated its treatment as well. Therefore, an investigation of alternate therapy, for instance, inhibition of the virulence factors is desperately needed. In the present study, a multidrug-resistant Candida albicans SDL-4 was screened for secretion of the virulence factors: aspartyl proteases and phospholipases. The pathogen secreted phospholipases potentially compared to aspartyl proteases. Therefore, C. albicans SDL-4 phospholipase was purified to homogeneity, characterized, and its inhibition was studied subsequently. It catalysed the substrate, p-nitrophenyl palmitate, optimally in 0.1 M acetate buffer, pH 5, at 37 °C. In the present study, we also aimed to re-purpose orlistat, which is a commercially available anti-obesity drug. Orlistat, at the concentration of 360 μg/ml, could diminish the activity and stability of the candidal virulence factor. Its half-life was reduced in the presence of orlistat at 37 °C. As well, increase in Km and unaltered Vmax indicated that orlistat inhibited phospholipase competitively. The inhibition kinetics was supported by measuring alterations in the secondary structure of the candidal phospholipase upon treatment with orlistat by the circular dichroism spectroscopy and K2D3. Moreover, validation of the study at clinical level may establish orlistat as a supportive treatment to reduce invasiveness and related medical intricacies during candidiasis.
Collapse
Affiliation(s)
- Hardi Sinde
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Priyanka Patel
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, 388 421, India
| | - Kunjan M Kikani
- Department of Microbiology, C.U. Shah Medical College, Surendranagar, Gujarat, 363 001, India
| | - Dhyey R Kothari
- Government Medical College, Bhavnagar, Gujarat, 364 001, India
| | - Bhavtosh A Kikani
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, Gujarat, 388 421, India.
| |
Collapse
|
5
|
Sousa-Silva M, Vieira D, Soares P, Casal M, Soares-Silva I. Expanding the Knowledge on the Skillful Yeast Cyberlindnera jadinii. J Fungi (Basel) 2021; 7:36. [PMID: 33435379 PMCID: PMC7827542 DOI: 10.3390/jof7010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 12/22/2022] Open
Abstract
Cyberlindnera jadinii is widely used as a source of single-cell protein and is known for its ability to synthesize a great variety of valuable compounds for the food and pharmaceutical industries. Its capacity to produce compounds such as food additives, supplements, and organic acids, among other fine chemicals, has turned it into an attractive microorganism in the biotechnology field. In this review, we performed a robust phylogenetic analysis using the core proteome of C. jadinii and other fungal species, from Asco- to Basidiomycota, to elucidate the evolutionary roots of this species. In addition, we report the evolution of this species nomenclature over-time and the existence of a teleomorph (C. jadinii) and anamorph state (Candida utilis) and summarize the current nomenclature of most common strains. Finally, we highlight relevant traits of its physiology, the solute membrane transporters so far characterized, as well as the molecular tools currently available for its genomic manipulation. The emerging applications of this yeast reinforce its potential in the white biotechnology sector. Nonetheless, it is necessary to expand the knowledge on its metabolism, regulatory networks, and transport mechanisms, as well as to develop more robust genetic manipulation systems and synthetic biology tools to promote the full exploitation of C. jadinii.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (D.V.); (P.S.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
6
|
A Thermolabile Phospholipase B from Talaromyces marneffei GD-0079: Biochemical Characterization and Structure Dynamics Study. Biomolecules 2020; 10:biom10020231. [PMID: 32033124 PMCID: PMC7072546 DOI: 10.3390/biom10020231] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/01/2022] Open
Abstract
Phospholipase B (EC 3.1.1.5) are a distinctive group of enzymes that catalyzes the hydrolysis of fatty acids esterified at the sn-1 and sn-2 positions forming free fatty acids and lysophospholipids. The structural information and catalytic mechanism of phospholipase B are still not clear. Herein, we reported a putative phospholipase B (TmPLB1) from Talaromyces marneffei GD-0079 synthesized by genome mining library. The gene (TmPlb1) was expressed and the TmPLB1 was purified using E. coli shuffle T7 expression system. The putative TmPLB1 was purified by affinity chromatography with a yield of 13.5%. The TmPLB1 showed optimum activity at 35 °C and pH 7.0. The TmPLB1 showed enzymatic activity using Lecithin (soybean > 98% pure), and the hydrolysis of TmPLB1 by 31P NMR showed phosphatidylcholine (PC) as a major phospholipid along with lyso-phospholipids (1-LPC and 2-LPC) and some minor phospholipids. The molecular modeling studies indicate that its active site pocket contains Ser125, Asp183 and His215 as the catalytic triad. The structure dynamics and simulations results explained the conformational changes associated with different environmental conditions. This is the first report on biochemical characterization and structure dynamics of TmPLB1 enzyme. The present study could be helpful to utilize TmPLB1 in food industry for the determination of food components containing phosphorus. Additionally, such enzyme could also be useful in Industry for the modifications of phospholipids.
Collapse
|
7
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
8
|
Dua A, Faridi S, Kashyap A, Gupta R. Characterization of a novel thiol activated phospholipase TAPLB1 from Trichosporon asahii MSR 54. Int J Biol Macromol 2018; 120:537-546. [PMID: 30153461 DOI: 10.1016/j.ijbiomac.2018.08.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 11/29/2022]
Abstract
Phospholipases are hydrolytic enzymes that play crucial roles in vivo and also possess immense biotechnological potential. In the present study, the phospholipase B of Trichosporon asahii MSR54 was overexpressed in E. coli and characterized. The 68-kDa enzyme was monomeric in solution and possessed phospholipase, lysophospholipase, esterase and acyltransferase activities. It was maximally active at pH 8.0 and 40 °C. The enzyme retained >50% activity between pH 3.0-8.0 and had a half-life of 30 min at 60 °C. Its activity was not metal dependent and was stable in the presence of most metal ions. Its catalytic efficiency on lysophosphatidyl choline was 1.0 × 103 mM-1 h-1. Site directed mutagenesis revealed R121 (present in the GYRAMV motif), S194 (present in the conserved GLSGG motif) and D420 (present in LVDXGE motif) to be the crucial amino acid residues for esterolytic activity. S194 and D420 were also the catalytic amino acids for lysophospholipase and phospholipase activities of the enzymes, while R121 was not involved in catalysis of phospholipid substrates. Further, it was found that cysteine residues in C61 and C354 were involved in disulphide linkages that imparted the properties of thiol activation and thermostability, respectively.
Collapse
Affiliation(s)
- Ashima Dua
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Shazia Faridi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
9
|
Watanabe Y, Kobayashi I, Ohnaka T, Watanabe S. In vitro synthesis of phospholipids with yeast phospholipase B, a phospholipid deacylating enzyme. ACTA ACUST UNITED AC 2018; 18:e00250. [PMID: 29876301 PMCID: PMC5989593 DOI: 10.1016/j.btre.2018.e00250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/19/2018] [Accepted: 03/28/2018] [Indexed: 11/30/2022]
Abstract
Saccharomyces cerevisiae PLB enzyme was expressed in E. coli. Purified Scplb1p exhibited deacylation activity. Purified Scplb1p transacylated LPC to PC and esterified LPC with FFA.
The gene encoding the Saccharomyces cerevisiae phospholipid deacylation enzyme, phospholipase B (ScPLB1), was successfully expressed in E. coli. The enzyme (Scplb1p) was engineered to have a histidine-tag at the C-terminal end and was purified by metal (Ni) affinity chromatography. Enzymatic properties, optimal pH, and substrate specificity were similar to those reported previously. For example, deacylation activity was observed in acidic pH in the absence of Ca2+ and was additive in neutral pH in the presence of Ca2+, and the enzyme had the same substrate priority as reported previously, with the exception of PE, suggesting that yeast phospholipase B could be produced in its native structure in bacterial cells. Scplb1p retained transacylation activity in aqueous medium, and esterified lysophosphatidylcholine with free fatty acid to form phosphatidylcholine in a non-aqueous, glycerin medium. We propose that phospholipase B could serve as an additional tool for in vitro enzyme-mediated phospholipid synthesis.
Collapse
Key Words
- CL, cardiolipin
- DHA, docosahexaenoic acid
- EDTA, ethylenediaminetetraacetic acid
- ELSD, evaporated light scattering detector
- Enzyme-mediated phospholipid synthesis
- Esterification
- FFA, free fatty acid
- HPLC, high-pressure liquid chromatography
- LPC, lysophosphatidylcholine
- PA, phosphatidic acid
- PC, phosphatidylcholine
- PE, phosphatidylethanolamine
- PI, phosphatidylinositol
- PLA2, phospholipase A2
- PLB, phospholipase B
- PS, phosphatidylserine
- Phospholipid deacylating enzyme
- Saccharomyces cerevisiae phospholipase B
- Transacylation
Collapse
Affiliation(s)
- Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Itsuki Kobayashi
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takanori Ohnaka
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan
| |
Collapse
|
10
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
11
|
Liu Y, Li M, Huang L, Gui S, Jia L, Zheng D, Fu Y, Zhang Y, Rui J, Lu F. Cloning, expression and characterisation of phospholipase B from Saccharomyces cerevisiae and its application in the synthesis of l-alpha-glycerylphosphorylcholine and peanut oil degumming. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1455536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Mingjie Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Lin Huang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Shuang Gui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Leibo Jia
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Dong Zheng
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yu Fu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Yutong Zhang
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Jinqiu Rui
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin, PR China
- National Engineering Laboratory for Industrial Enzymes, Tianjin, PR China
- The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
12
|
Buerth C, Tielker D, Ernst JF. Candida utilis and Cyberlindnera (Pichia) jadinii: yeast relatives with expanding applications. Appl Microbiol Biotechnol 2016; 100:6981-90. [DOI: 10.1007/s00253-016-7700-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
|
13
|
Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
15
|
Matsumoto Y, Mineta S, Murayama K, Sugimori D. A novel phospholipase B fromStreptomycessp. NA684 - purification, characterization, gene cloning, extracellular production and prediction of the catalytic residues. FEBS J 2013; 280:3780-96. [DOI: 10.1111/febs.12366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Accepted: 05/21/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Yusaku Matsumoto
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| | - Shingo Mineta
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics; Graduate School of Biomedical Engineering; Tohoku University; Sendai Japan
| | - Daisuke Sugimori
- Department of Symbiotic Systems Science and Technology; Graduate School of Symbiotic Systems Science and Technology; Fukushima University; Japan
| |
Collapse
|
16
|
Phospholipases A
1
from
Armillaria ostoyae
Provide Insight into the Substrate Recognition of α/β‐Hydrolase Fold Enzymes. J AM OIL CHEM SOC 2012. [DOI: 10.1007/s11746-012-2050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Buerth C, Heilmann CJ, Klis FM, de Koster CG, Ernst JF, Tielker D. Growth-dependent secretome of Candida utilis. MICROBIOLOGY-SGM 2011; 157:2493-2503. [PMID: 21680638 DOI: 10.1099/mic.0.049320-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, the food yeast Candida utilis has emerged as an excellent host for production of heterologous proteins. Since secretion of the recombinant product is advantageous for its purification, we characterized the secreted proteome of C. utilis. Cells were cultivated to the exponential or stationary growth phase, and the proteins in the medium were identified by MS. In parallel, a draft genome sequence of C. utilis strain DSM 2361 was determined by massively parallel sequencing. Comparisons of protein and coding sequences established that C. utilis is not a member of the CUG clade of Candida species. In total, we identified 37 proteins in the culture solution, 17 of which were exclusively present in the stationary phase, whereas three proteins were specific to the exponential growth phase. Identified proteins represented mostly carbohydrate-active enzymes associated with cell wall organization, while no proteolytic enzymes and only a few cytoplasmic proteins were detected. Remarkably, cultivation in xylose-based medium generated a protein pattern that diverged significantly from glucose-grown cells, containing the invertase Inv1 as the major extracellular protein, particularly in its highly glycosylated S-form (slow-migrating). Furthermore, cultivation without ammonium sulfate induced the secretion of the asparaginase Asp3. Comparisons of the secretome of C. utilis with those of Kluyveromyces lactis and Pichia pastoris, as well as with those of the human fungal pathogens Candida albicans and Candida glabrata, revealed a conserved set of 10 and six secretory proteins, respectively.
Collapse
Affiliation(s)
- Christoph Buerth
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Clemens J Heilmann
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joachim F Ernst
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| | - Denis Tielker
- Molecular Mycology, Heinrich-Heine-University, Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Taniguchi L, de Fátima Faria B, Rosa RT, de Paula E Carvalho A, Gursky LC, Elifio-Esposito SL, Parahitiyawa N, Samaranayake LP, Rosa EAR. Proposal of a low-cost protocol for colorimetric semi-quantification of secretory phospholipase by Candida albicans grown in planktonic and biofilm phases. J Microbiol Methods 2009; 78:171-4. [PMID: 19464327 DOI: 10.1016/j.mimet.2009.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 11/28/2022]
Abstract
Biofilms are aggregates of microorganisms living in multilayered structures inside polymeric matrices onto surfaces. These biofilms may subvert the physiological properties of adjacent tissues causing morphofunctional failure. Many studies have shown that the expression of virulence attributes is maximized when microbes form such communities. This study evaluated the differential phospholipasic activity of Candida albicans SC5314 grown in planktonic phase and in biofilm. We propose two distinct protocols for the colorimetric evaluation of phosphatidylcholine hydrolysis in neutral and acidic conditions. The results showed that both protocols are suitable for the proposed intention and that 72 h-old planktonic cultures of C. albicans SC5314 secrete higher quantities of neutral (6.42-fold) and acidic (3.85-fold) phospholipases than biofilms.
Collapse
Affiliation(s)
- Lisa Taniguchi
- Laboratory of Stomatology, Faculty of Dentistry, The Pontifical Catholic University of Paraná, Rua Imaculada Conceição 1155, Curitiba, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bergfeld AK, Claus H, Lorenzen NK, Spielmann F, Vogel U, Mu Hlenhoff M. The polysialic acid-specific O-acetyltransferase OatC from Neisseria meningitidis serogroup C evolved apart from other bacterial sialate O-acetyltransferases. J Biol Chem 2008; 284:6-16. [PMID: 18986988 DOI: 10.1074/jbc.m807518200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis serogroup C is a major cause of bacterial meningitis and septicaemia. This human pathogen is protected by a capsule composed of alpha2,9-linked polysialic acid that represents an important virulence factor. In the majority of strains, the capsular polysaccharide is modified by O-acetylation at C-7 or C-8 of the sialic acid residues. The gene encoding the capsule modifying O-acetyltransferase is part of the capsule gene complex and shares no sequence similarities with other proteins. Here, we describe the purification and biochemical characterization of recombinant OatC. The enzyme was found as a homodimer, with the first 34 amino acids forming an efficient oligomerization domain that worked even in a different protein context. Using acetyl-CoA as donor substrate, OatC transferred acetyl groups exclusively onto polysialic acid joined by alpha2,9-linkages and did not act on free or CMP-activated sialic acid. Motif scanning revealed a nucleophile elbow motif (GXS286XGG), which is a hallmark of alpha/beta-hydrolase fold enzymes. In a comprehensive site-directed mutagenesis study, we identified a catalytic triad composed of Ser-286, Asp-376, and His-399. Consistent with a double-displacement mechanism common to alpha/beta-hydrolase fold enzymes, a covalent acetylenzyme intermediate was found. Together with secondary structure prediction highlighting an alpha/beta-hydrolase fold topology, our data provide strong evidence that OatC belongs to the alpha/beta-hydrolase fold family. This clearly distinguishes OatC from all other bacterial sialate O-acetyltransferases known so far because these are members of the hexapeptide repeat family, a class of acyltransferases that adopt a left-handed beta-helix fold and assemble into catalytic trimers.
Collapse
Affiliation(s)
- Anne K Bergfeld
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany
| | - Heike Claus
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany
| | - Nina K Lorenzen
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany
| | - Fabian Spielmann
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany
| | - Ulrich Vogel
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany
| | - Martina Mu Hlenhoff
- Department of Cellular Chemistry, Medical School Hannover, 30623 Hannover, Germany and the Institute for Hygiene and Microbiology, University of Wu¨rzburg, 97080 Wu¨rzburg, Germany.
| |
Collapse
|
20
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|