1
|
Pratelli G, Tamburini B, Carlisi D, De Blasio A, D’Anneo A, Emanuele S, Notaro A, Affranchi F, Giuliano M, Seidita A, Lauricella M, Di Liberto D. Foodomics-Based Approaches Shed Light on the Potential Protective Effects of Polyphenols in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:14619. [PMID: 37834065 PMCID: PMC10572570 DOI: 10.3390/ijms241914619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Department of Physics and Chemistry (DiFC) Emilio Segrè, University of Palermo, 90128 Palermo, Italy;
| | - Bartolo Tamburini
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Federica Affranchi
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy; (A.D.B.); (A.D.); (A.N.); (F.A.); (M.G.)
| | - Aurelio Seidita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, 90127 Palermo, Italy;
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy; (B.T.); (D.C.); (S.E.)
| |
Collapse
|
2
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
3
|
Liu C, Li P, Qu Z, Xiong W, Liu A, Zhang S. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors. Molecules 2019; 24:molecules24091726. [PMID: 31058847 PMCID: PMC6539113 DOI: 10.3390/molecules24091726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Due to changes in the dietary structure of individuals, the incidence of digestive tract tumors has increased significantly in recent years, causing a serious threat to the life and health of patients. This has in turn led to an increase in cancer prevention research. Many studies have shown that epigallocatechin-3-gallate (EGCG), an active ingredient in green tea, is in direct contact with the digestive tract upon ingestion, which allows it to elicit a significant antagonizing effect on digestive tract tumors. The main results of EGCG treatment include the prevention of tumor development in the digestive tract and the induction of cell cycle arrest and apoptosis. EGCG can be orally administered, is safe, and combats other resistances. The synergistic use of cancer drugs can promote the efficacy and reduce the anti-allergic properties of drugs, and is thus, favored in medical research. EGCG, however, currently possesses several shortcomings such as poor stability and low bioavailability, and its clinical application prospects need further development. In this paper, we have systematically summarized the research progress on the ability of EGCG to antagonize the activity and mechanism of action of digestive tract tumors, to achieve prevention, alleviation, delay, and even treat human gastrointestinal tract tumors via exogenous dietary EGCG supplementation or the development of new drugs containing EGCG.
Collapse
Affiliation(s)
- Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha 410078, China.
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China.
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
4
|
Burge K, Gunasekaran A, Eckert J, Chaaban H. Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. Int J Mol Sci 2019; 20:ijms20081912. [PMID: 31003422 PMCID: PMC6514688 DOI: 10.3390/ijms20081912] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal inflammatory diseases, such as Crohn’s disease, ulcerative colitis, and necrotizing enterocolitis, are becoming increasingly prevalent. While knowledge of the pathogenesis of these related diseases is currently incomplete, each of these conditions is thought to involve a dysfunctional, or overstated, host immunological response to both bacteria and dietary antigens, resulting in unchecked intestinal inflammation and, often, alterations in the intestinal microbiome. This inflammation can result in an impaired intestinal barrier allowing for bacterial translocation, potentially resulting in systemic inflammation and, in severe cases, sepsis. Chronic inflammation of this nature, in the case of inflammatory bowel disease, can even spur cancer growth in the longer-term. Recent research has indicated certain natural products with anti-inflammatory properties, such as curcumin, can help tame the inflammation involved in intestinal inflammatory diseases, thus improving intestinal barrier function, and potentially, clinical outcomes. In this review, we explore the potential therapeutic properties of curcumin on intestinal inflammatory diseases, including its antimicrobial and immunomodulatory properties, as well as its potential to alter the intestinal microbiome. Curcumin may play a significant role in intestinal inflammatory disease treatment in the future, particularly as an adjuvant therapy.
Collapse
Affiliation(s)
- Kathryn Burge
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Aarthi Gunasekaran
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Jeffrey Eckert
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| | - Hala Chaaban
- Department of Pediatrics, Division of Neonatology, University of Oklahoma Health Sciences Center, 1200 North Everett Drive, ETNP7504, Oklahoma City, OK 73104, USA.
| |
Collapse
|
5
|
Nurdin SU, Le Leu RK, Aburto-Medina A, Young GP, Stangoulis JCR, Ball AS, Abbott CA. Effects of Dietary Fibre from the Traditional Indonesian Food, Green Cincau ( Premna oblongifolia Merr.) on Preneoplastic Lesions and Short Chain Fatty Acid Production in an Azoxymethane Rat Model of Colon Cancer. Int J Mol Sci 2018; 19:E2593. [PMID: 30200383 PMCID: PMC6164679 DOI: 10.3390/ijms19092593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023] Open
Abstract
Green cincau (Premna oblongifolia Merr.) is a traditional food of Indonesia and provides a natural source of dietary fibre and antioxidants. This study evaluated the ability of green cincau, and other dietary fibres with or without the addition of anti-oxidant, epigallocatechin-3-gallate (EGCG), to prevent colorectal cancer in a 12 week azoxymethane (AOM) rat model. While all dietary treatments stimulated short chain fatty acid production (SCFA) in the digesta and faeces, no one treatment was able to significantly protect against aberrant crypt formation (ACF), when compared to the control diet. However, feeding green cincau leaves or extracts did not result in an increase in ACF compared to the control diet. Unexpectedly, when the dietary fibre source was pectin, 0.1% EGCG increased proliferative activity and liver lipid peroxidation when compared to the control diet containing cellulose. Examination of faecal microbial communities identified the presence of short chain acid producing bacteria, but a distinct community profile was not observed from any individual diet group. Overall, this research implies that combining dietary fibre with an antioxidant does not automatically equate to a beneficial response. Further work is required to investigate the health-promoting properties of green cincau.
Collapse
Affiliation(s)
- Samsu U Nurdin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Richard K Le Leu
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Arturo Aburto-Medina
- School of Science, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia.
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - James C R Stangoulis
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| | - Andy S Ball
- School of Science, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia.
| | - Catherine A Abbott
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
- Flinders Centre for Innovation in Cancer, Flinders University, GPO Box 2100, Adelaide 5001, Australia.
| |
Collapse
|
6
|
Autumn Royal and Ribier Grape Juice Extracts Reduced Viability and Metastatic Potential of Colon Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2517080. [PMID: 29552079 PMCID: PMC5820573 DOI: 10.1155/2018/2517080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 12/13/2017] [Indexed: 01/22/2023]
Abstract
Antioxidants are known to be beneficial to health. This paper evaluates the potential chemopreventive and anticancer properties of phenolic compounds present in grape juice extracts (GJE) from Autumn Royal and Ribier varieties. The effects of these GJE on viability (SRB day assay) and metastatic potential (migration and invasion parameters) of colon cancer cell lines HT-29 and SW-480 were evaluated. The effects of GJE on two matrix metalloproteinase gene expressions (MMP2 and MMP9) were also evaluated via qRT-PCR. In the former, GJE reduced cell viability in both cell lines in a dose-dependent manner. GJE treatment also reduced cell migration and invasion. Moreover, MMP-2 and MMP-9 gene expression diminished depending on extract and on cell type. Conclusions. These results provide novel information concerning anticancer properties of selected GJE by revealing selective cytotoxicity and the ability to reduce invasiveness of colon cancer cells.
Collapse
|
7
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017. [DOI: 10.1080/10408398.2016.1231168 pmid: 27645804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Ren-You Gan
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Zhong-Quan Sui
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Gan RY, Li HB, Sui ZQ, Corke H. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Crit Rev Food Sci Nutr 2017; 58:924-941. [PMID: 27645804 DOI: 10.1080/10408398.2016.1231168] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Green tea is one of the most popular beverages in the world, especially in Asian countries. Consumption of green tea has been demonstrated to possess many health benefits, which mainly attributed to the main bioactive compound epigallocatechin gallate (EGCG), a flavone-3-ol polyphenol, in green tea. EGCG is mainly absorbed in the intestine, and gut microbiota play a critical role in its metabolism prior to absorption. EGCG exhibits versatile bioactivities, with its anti-cancer effect most attracting due to the cancer preventive effect of green tea consumption, and a great number of studies intensively investigated its anti-cancer effect. In this review, we therefore, first stated the absorption and metabolism process of EGCG, and then summarized its anti-cancer effect in vitro and in vivo, including its manifold anti-cancer actions and mechanisms, especially its anti-cancer stem cell effect, and next highlighted its various molecular targets involved in cancer inhibition. Finally, the anti-cancer effect of EGCG analogs and nanoparticles, as well as the potential cancer promoting effect of EGCG were also discussed. Understanding of the absorption, metabolism, anti-cancer effect and molecular targets of EGCG can be of importance to better utilize it as a chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Ren-You Gan
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| | - Hua-Bin Li
- c Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhong-Quan Sui
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China
| | - Harold Corke
- a Department of Food Science and Engineering, School of Agriculture and Biology , Shanghai Jiao Tong University , Shanghai , China.,b School of Biological Sciences , The University of Hong Kong , Hong Kong
| |
Collapse
|
9
|
Mohabbulla Mohib M, Fazla Rabby S, Paran TZ, Mehedee Hasan M, Ahmed I, Hasan N, Abu Taher Sagor M, Mohiuddin S. Protective role of green tea on diabetic nephropathy—A review. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1248166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md. Mohabbulla Mohib
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - S.M. Fazla Rabby
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Tasfiq Zaman Paran
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Mehedee Hasan
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Iqbal Ahmed
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Nahid Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Md. Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| | - Sarif Mohiuddin
- Department of Anatomy, Pioneer Dental College and Hospital, Dhaka 1229, Bangladesh
| |
Collapse
|
10
|
Chowdhury A, Sarkar J, Chakraborti T, Pramanik PK, Chakraborti S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed Pharmacother 2016; 78:50-59. [DOI: 10.1016/j.biopha.2015.12.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 12/28/2022] Open
|
11
|
Butt MS, Ahmad RS, Sultan MT, Qayyum MMN, Naz A. Green tea and anticancer perspectives: updates from last decade. Crit Rev Food Sci Nutr 2016; 55:792-805. [PMID: 24915354 DOI: 10.1080/10408398.2012.680205] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Green tea is the most widely consumed beverage besides water and has attained significant attention owing to health benefits against array of maladies, e.g., obesity, diabetes mellitus, cardiovascular disorders, and cancer insurgence. The major bioactive molecules are epigallocatechin-3-gallate, epicatechin, epicatechin-3-gallate, epigallocatechin, etc. The anticarcinogenic and antimutagenic activities of green tea were highlighted some years ago. Several cohort studies and controlled randomized trials suggested the inverse association of green tea consumption and cancer prevalence. Cell culture and animal studies depicted the mechanisms of green tea to control cancer insurgence, i.e., induction of apoptosis to control cell growth arrest, altered expression of cell-cycle regulatory proteins, activation of killer caspases, and suppression of nuclear factor kappa-B activation. It acts as carcinoma blocker by modulating the signal transduction pathways involved in cell proliferation, transformation, inflammation, and metastasis. However, results generated from some research interventions conducted in different groups like smokers and nonsmokers, etc. contradicted with aforementioned anticancer perspectives. In this review paper, anticancer perspectives of green tea and its components have been described. Recent findings and literature have been surfed and arguments are presented to clarify the ambiguities regarding anticancer perspectives of green tea and its component especially against colon, skin, lung, prostate, and breast cancer. The heading of discussion and future trends is limelight of the manuscript. The compiled manuscript provides new avenues for researchers to be explored in relation to green tea and its bioactive components.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- a National Institute of Food Science and Technology , University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | |
Collapse
|
12
|
Wang X, Zuo D, Chen Y, Li W, Liu R, He Y, Ren L, Zhou L, Deng T, Wang X, Ying G, Ba Y. Shed Syndecan-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer. Br J Cancer 2014; 111:1965-76. [PMID: 25321193 PMCID: PMC4229635 DOI: 10.1038/bjc.2014.493] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/30/2014] [Accepted: 08/13/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Syndecan-1 (Sdc-1) shedding induced by matrix metalloproteinase-7 (MMP-7) and additional proteases has an important role in cancer development. However, the impact of Sdc-1 shedding on chemotherapeutic resistance has not been reported. Methods: We examined Sdc-1 shedding in colorectal cancer by enzyme-linked immunosorbent assay (ELISA), Dot blot, reverse transcription-PCR (RT-PCR), immunohistochemistry and so on, its impact on chemotherapeutic sensitivity by collagen gel droplet embedded culture-drug sensitivity test (CD-DST) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), and potential mechanisms of action by Dot blot, western blot and immunofluorescence. Results: Sdc-1 shedding was increased in colorectal cancer patients, Sdc-1 serum levels in postoperative patients were lower than in preoperative patients, but still higher than those observed in healthy adults. Patients with high preoperative Sdc-1 serum levels were less responsive to 5-Fluorouracil, Oxaliplatin, Irintecan, Cisplatin or Paclitaxel chemotherapy. Moreover, the disease-free survival of patients with high preoperative Sdc-1 serum levels was significantly poorer. The possible mechanism of chemotherapy resistance in colorectal cancer can be attributed to Sdc-1 shedding, which enhances EGFR phosphorylation and downstream signalling. Conclusions: Shed Sdc-1 is involved in chemotherapy resistance via the EGFR pathway in colorectal cancer, and Sdc-1 serum levels could be a new prognostic marker in colorectal cancer.
Collapse
Affiliation(s)
- X Wang
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - D Zuo
- Key Laboratory of Cancer Prevention and Therapy, Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - W Li
- Department of Cardiovascular Medicine, Tianjin Chest Hospital, Tianjin 300000, China
| | - R Liu
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y He
- Department of Hepatology and Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Ren
- Key Laboratory of Cancer Prevention and Therapy, Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - L Zhou
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - T Deng
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - X Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G Ying
- Laboratory of Cancer Cell Biology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Y Ba
- Key Laboratory of Cancer Prevention and Therapy, Department of Gastrointestinal Oncology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| |
Collapse
|
13
|
Kato I, Startup J, Ram JL. Fecal Biomarkers for Research on Dietary and Lifestyle Risk Factors in Colorectal Cancer Etiology. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0195-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Bansal S, Vyas S, Bhattacharya S, Sharma M. Catechin prodrugs and analogs: a new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat Prod Rep 2013; 30:1438-54. [DOI: 10.1039/c3np70038k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
15
|
Scientific evidence and rationale for the development of curcumin and resveratrol as nutraceutricals for joint health. Int J Mol Sci 2012; 13:4202-4232. [PMID: 22605974 PMCID: PMC3344210 DOI: 10.3390/ijms13044202] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/12/2012] [Accepted: 03/19/2012] [Indexed: 01/21/2023] Open
Abstract
Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods.
Collapse
|
16
|
Glutathione homeostasis and functions: potential targets for medical interventions. JOURNAL OF AMINO ACIDS 2012; 2012:736837. [PMID: 22500213 PMCID: PMC3303626 DOI: 10.1155/2012/736837] [Citation(s) in RCA: 715] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 08/30/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
Abstract
Glutathione (GSH) is a tripeptide, which has many biological roles including protection against reactive oxygen and nitrogen species. The primary goal of this paper is to characterize the principal mechanisms of the protective role of GSH against reactive species and electrophiles. The ancillary goals are to provide up-to-date knowledge of GSH biosynthesis, hydrolysis, and utilization; intracellular compartmentalization and interorgan transfer; elimination of endogenously produced toxicants; involvement in metal homeostasis; glutathione-related enzymes and their regulation; glutathionylation of sulfhydryls. Individual sections are devoted to the relationships between GSH homeostasis and pathologies as well as to developed research tools and pharmacological approaches to manipulating GSH levels. Special attention is paid to compounds mainly of a natural origin (phytochemicals) which affect GSH-related processes. The paper provides starting points for development of novel tools and provides a hypothesis for investigation of the physiology and biochemistry of glutathione with a focus on human and animal health.
Collapse
|
17
|
Fimognari C, Turrini E, Ferruzzi L, Lenzi M, Hrelia P. Natural isothiocyanates: genotoxic potential versus chemoprevention. Mutat Res 2011; 750:107-131. [PMID: 22178957 DOI: 10.1016/j.mrrev.2011.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/01/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Isothiocyanates, occurring in many dietary cruciferous vegetables, show interesting chemopreventive activities against several chronic-degenerative diseases, including cancer, cardiovascular diseases, neurodegeneration, diabetes. The electrophilic carbon residue in the isothiocyanate moiety reacts with biological nucleophiles and modification of proteins is recognized as a key mechanism underlying the biological activity of isothiocyanates. The nuclear factor-erythroid-2-related factor 2 system, which orchestrates the expression of a wide array of antioxidant genes, plays a role in the protective effect of isothiocyanates against almost all the pathological conditions reported above. Recent emerging findings suggest a further common mechanism. Chronic inflammation plays a central role in many human diseases and isothiocyanates inhibit the activity of many inflammation components, suppress cyclooxygenase 2, and irreversibly inactivate the macrophage migration inhibitory factor. Due to their electrophilic reactivity, some isothiocyanates are able to form adducts with DNA and induce gene mutations and chromosomal aberrations. DNA damage has been demonstrated to be involved in the pathogenesis of various chronic-degenerative diseases of epidemiological relevance. Thus, the genotoxicity of the isothiocyanates should be carefully considered. In addition, the dose-response relationship for genotoxic compounds does not suggest evidence of a threshold. Thus, chemicals that are genotoxic pose a greater potential risk to humans than non-genotoxic compounds. Dietary consumption levels of isothiocyanates appear to be several orders of magnitude lower than the doses used in the genotoxicity studies and thus it is highly unlikely that such toxicities would occur in humans. However, the beneficial properties of isothiocyanates stimulated an increase of dietary supplements and functional foods with highly enriched isothiocyanate concentrations on the market. Whether such concentrations may exert a potential health risk cannot be excluded with certainty and an accurate evaluation of the toxicological profile of isothiocyanates should be prompted before any major increase in their consumption be recommended or their clinical use suggested.
Collapse
Affiliation(s)
- Carmela Fimognari
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Lorenzo Ferruzzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monia Lenzi
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacology, University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
18
|
Inoue H, Akiyama S, Maeda-Yamamoto M, Nesumi A, Tanaka T, Murakami A. High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions. Cell Stress Chaperones 2011; 16:653-62. [PMID: 21766215 PMCID: PMC3220383 DOI: 10.1007/s12192-011-0280-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/17/2023] Open
Abstract
Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice.
Collapse
Affiliation(s)
- Hirofumi Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Satoko Akiyama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Mari Maeda-Yamamoto
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Atsushi Nesumi
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 2769 Kanaya, Shimada, Shizuoka 428-8501 Japan
| | - Takuji Tanaka
- The Tohkai Cytopathology Institute: Cancer Research and Prevention (TCI-CaPP), 4-33 Minami-Uzura, Gifu, 500-8285 Japan
| | - Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
19
|
Ho BY, Wu YM, Chang KJ, Pan TM. Dimerumic acid inhibits SW620 cell invasion by attenuating H₂O₂-mediated MMP-7 expression via JNK/C-Jun and ERK/C-Fos activation in an AP-1-dependent manner. Int J Biol Sci 2011; 7:869-80. [PMID: 21814482 PMCID: PMC3149281 DOI: 10.7150/ijbs.7.869] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide (H₂O₂) in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP)-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA) for H₂O₂ isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H₂O₂ exposure was mediated by activation of mitogen-activated protein kinases (MAPKs) such as Jun N-terminal kinase (JNK), extracellular-regulated kinase (ERK), and p38 kinase. DMA pretreatment suppressed activation of H₂O₂-mediated MAPK pathways and cell invasion. Moreover, H₂O₂-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1)-dependent manner. Taken together, these results suggest that DMA suppresses H₂O₂-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.
Collapse
Affiliation(s)
- Bing-Ying Ho
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
20
|
Forester SC, Lambert JD. The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Mol Nutr Food Res 2011; 55:844-54. [PMID: 21538850 DOI: 10.1002/mnfr.201000641] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/25/2011] [Accepted: 03/17/2011] [Indexed: 12/21/2022]
Abstract
Consumption of green tea (Camellia sinensis) may provide protection against chronic diseases, including cancer. Green tea polyphenols are believed to be responsible for this cancer preventive effect, and the antioxidant activity of the green tea polyphenols has been implicated as a potential mechanism. This hypothesis has been difficult to study in vivo due to metabolism of these compounds and poor understanding of the redox environment in vivo. Green tea polyphenols can be direct antioxidants by scavenging reactive oxygen species or chelating transition metals as has been demonstrated in vitro. Alternatively, they may act indirectly by upregulating phase II antioxidant enzymes. Evidence of this latter effect has been observed in vivo, yet more work is required to determine under which conditions these mechanisms occur. Green tea polyphenols can also be potent pro-oxidants, both in vitro and in vivo, leading to the formation of hydrogen peroxide, the hydroxyl radical, and superoxide anion. The potential role of these pro-oxidant effects in the cancer preventive activity of green tea is not well understood. The evidence for not only the antioxidant, but also pro-oxidant, properties of green tea is discussed in the present review.
Collapse
Affiliation(s)
- Sarah C Forester
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
21
|
EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv Clin Chem 2011; 53:155-77. [PMID: 21404918 DOI: 10.1016/b978-0-12-385855-9.00007-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer-preventive effects of tea polyphenols, especially epigallocatechin-3-gallate (EGCG), have been demonstrated by epidemiological, preclinical, and clinical studies. Green tea polyphenols such as EGCG have the potential to affect multiple biological pathways, including gene expression, growth factor-mediated pathways, the mitogen-activated protein kinase-dependent pathway, and the ubiquitin/proteasome degradation pathway. Therefore, identification of the molecular targets of EGCG should greatly facilitate a better understanding of the mechanisms underlying its anticancer and cancer-preventive activities. Performing structure-activity relationship (SAR) studies could also greatly enhance the discovery of novel tea polyphenol analogs as potential anticancer and cancer-preventive agents. In this chapter, we review the relevant literature as it relates to the effects of natural and synthetic green tea polyphenols and EGCG analogs on human cancer cells and their potential molecular targets as well as their antitumor effects. We also discuss the implications of green tea polyphenols in cancer prevention.
Collapse
|
22
|
Ramos NL, Saayman ML, Chapman TA, Tucker JR, Smith HV, Faoagali J, Chin JC, Brauner A, Katouli M. Genetic relatedness and virulence gene profiles of Escherichia coli strains isolated from septicaemic and uroseptic patients. Eur J Clin Microbiol Infect Dis 2009; 29:15-23. [PMID: 19763642 DOI: 10.1007/s10096-009-0809-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/08/2009] [Indexed: 10/20/2022]
Abstract
We investigated the relationship between clonality and virulence factors (VFs) of a collection of Escherichia coli strains isolated from septicaemic and uroseptic patients with respect to their origin of translocation. Forty septicaemic and 30 uroseptic strains of E. coli were tested for their phylogenetic groupings, genetic relatedness using randomly amplified polymorphic DNA (RAPD), biochemical fingerprinting method (biochemical phenotypes [BPTs]), adherence to HT-29 cells and the presence of 56 E. coli VF genes. Strains belonging to phylogenetic groups B2 and D constituted 93% of all strains. Fifty-four (77%) strains belonged to two major BPT/RAPD clusters (A and B), with cluster A carrying significantly (P = 0.0099) more uroseptic strains. The degree of adhesion to HT-29 cells of uroseptic strains was significantly (P = 0.0012) greater than that of septicaemic strains. Of the 56 VF genes tested, pap genes was the only group that were found significantly (P < 0.0001) more often among uroseptic isolates. Phylogenetic group B2 contained a significantly higher number of strains carrying pap genes than those in group D. We conclude that uroseptic E. coli are clonally different from septicaemic strains, carry more pap genes and predominantly adhere more to the HT-29 cell model of the gut.
Collapse
Affiliation(s)
- N L Ramos
- Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, DC, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|