1
|
Wang L, O'Conner S, Tanvir R, Zheng W, Cothron S, Towery K, Bi H, Ellison EE, Yang B, Voytas DF, Li L. CRISPR/Cas9-based editing of NF-YC4 promoters yields high-protein rice and soybean. THE NEW PHYTOLOGIST 2025; 245:2103-2116. [PMID: 39307530 PMCID: PMC11798907 DOI: 10.1111/nph.20141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/28/2024] [Indexed: 02/07/2025]
Abstract
Genome editing is a revolution in biotechnology for crop improvement with the final product lacking transgenes. However, most derived traits have been generated through edits that create gene knockouts. Our study pioneers a novel approach, utilizing gene editing to enhance gene expression by eliminating transcriptional repressor binding motifs. Building upon our prior research demonstrating the protein-boosting effects of the transcription factor NF-YC4, we identified conserved motifs targeted by RAV and WRKY repressors in the NF-YC4 promoters from rice (Oryza sativa) and soybean (Glycine max). Leveraging CRISPR/Cas9 technology, we deleted these motifs, resulting in reduced repressor binding and increased NF-YC4 expression. This strategy led to increased protein content and reduced carbohydrate levels in the edited rice and soybean plants, with rice exhibiting up to a 68% increase in leaf protein and a 17% increase in seed protein, and soybean showing up to a 25% increase in leaf protein and an 11% increase in seed protein. Our findings provide a blueprint for enhancing gene expression through precise genomic deletions in noncoding sequences, promising improved agricultural productivity and nutritional quality.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
- College of Life SciencesShihezi UniversityShiheziXinjiang832003China
| | - Seth O'Conner
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Rezwan Tanvir
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Samuel Cothron
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Katherine Towery
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| | - Honghao Bi
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Evan E. Ellison
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMO65211USA
- Donald Danforth Plant Science CenterSt LouisMO63132USA
| | - Daniel F. Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome EngineeringUniversity of MinnesotaMinneapolisMN55108USA
| | - Ling Li
- Department of Biological SciencesMississippi State UniversityMississippi StateMS39762USA
| |
Collapse
|
2
|
Pei T, Zhan M, Niu D, Liu Y, Deng J, Jing Y, Li P, Liu C, Ma F. CERK1 compromises Fusarium solani resistance by reducing jasmonate level and undergoes a negative feedback regulation via the MMK2-WRKY71 module in apple. PLANT, CELL & ENVIRONMENT 2024; 47:2491-2509. [PMID: 38515330 DOI: 10.1111/pce.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Fusarium spp., a necrotrophic soil-borne pathogen, causes root rot disease on many crops. CERK1, as a typical pattern recognition receptor, has been widely studied. However, the function of CERK1 during plant-Fusarium interaction has not been well described. We determined that MdCERK1 is a susceptibility gene in the apple-Fusarium solani (Fs) interaction, and jasmonic acid (JA) plays a crucial role in this process. MdCERK1 directly targets and phosphorylates the lipoxygenase MdLOX2.1, an enzyme initiating the JA biosynthesis, at positions Ser326 and Thr327. These phosphorylations inhibit its translocation from the cytosol to the chloroplasts, leading to a compromised JA biosynthesis. Fs upregulates MdCERK1 expression during infection. In turn, when the JA level is low, the apple MdWRKY71, a transcriptional repressor of MdCERK1, is markedly upregulated and phosphorylated at Thr99 and Thr102 residues by the MAP kinase MdMMK2. The phosphorylation of MdWRKY71 enhances its transcription inhibition on MdCERK1. Taken together, MdCERK1 plays a novel role in limiting JA biosynthesis. There seems to be an arms race between apple and Fs, in which Fs activates MdCERK1 expression to reduce the JA level, while apple senses the low JA level and activates the MdMMK2-MdWRKY71 module to elevate JA level by inhibiting MdCERK1 expression.
Collapse
Affiliation(s)
- Tingting Pei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongshan Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuerong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Jing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Li X, Zhang J, Shangguan X, Yin J, Zhu L, Hu J, Du B, Lv W. Knockout of OsWRKY71 impairs Bph15-mediated resistance against brown planthopper in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1260526. [PMID: 38023936 PMCID: PMC10652391 DOI: 10.3389/fpls.2023.1260526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
The Bph15 gene, known for its ability to confer resistance to the brown planthopper (BPH; Nilaparvata lugens Stål), has been extensively employed in rice breeding. However, the molecular mechanism by which Bph15 provides resistance against BPH in rice remains poorly understood. In this study, we reported that the transcription factor OsWRKY71 was highly responsive to BPH infestation and exhibited early-induced expression in Bph15-NIL (near-isogenic line) plants, and OsWRKY71 was localized in the nucleus of rice protoplasts. The knockout of OsWRKY71 in the Bph15-NIL background by CRISPR-Cas9 technology resulted in an impaired Bph15-mediated resistance against BPH. Transcriptome analysis revealed that the transcript profiles responsive to BPH differed between the wrky71 mutant and Bph15-NIL, and the knockout of OsWRKY71 altered the expression of defense genes. Subsequent quantitative RT-PCR analysis identified three genes, namely sesquiterpene synthase OsSTPS2, EXO70 family gene OsEXO70J1, and disease resistance gene RGA2, which might participate in BPH resistance conferred by OsWRKY71 in Bph15-NIL plants. Our investigation demonstrated the pivotal involvement of OsWRKY71 in Bph15-mediated resistance and provided new insights into the rice defense mechanisms against BPH.
Collapse
Affiliation(s)
- Xiaozun Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian Zhang
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Jingjing Yin
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wentang Lv
- Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
4
|
Tsai SH, Hsiao YC, Chang PE, Kuo CE, Lai MC, Chuang HW. Exploring the Biologically Active Metabolites Produced by Bacillus cereus for Plant Growth Promotion, Heat Stress Tolerance, and Resistance to Bacterial Soft Rot in Arabidopsis. Metabolites 2023; 13:metabo13050676. [PMID: 37233717 DOI: 10.3390/metabo13050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Eight gene clusters responsible for synthesizing bioactive metabolites associated with plant growth promotion were identified in the Bacillus cereus strain D1 (BcD1) genome using the de novo whole-genome assembly method. The two largest gene clusters were responsible for synthesizing volatile organic compounds (VOCs) and encoding extracellular serine proteases. The treatment with BcD1 resulted in an increase in leaf chlorophyll content, plant size, and fresh weight in Arabidopsis seedlings. The BcD1-treated seedlings also accumulated higher levels of lignin and secondary metabolites including glucosinolates, triterpenoids, flavonoids, and phenolic compounds. Antioxidant enzyme activity and DPPH radical scavenging activity were also found to be higher in the treated seedlings as compared with the control. Seedlings pretreated with BcD1 exhibited increased tolerance to heat stress and reduced disease incidence of bacterial soft rot. RNA-seq analysis showed that BcD1 treatment activated Arabidopsis genes for diverse metabolite synthesis, including lignin and glucosinolates, and pathogenesis-related proteins such as serine protease inhibitors and defensin/PDF family proteins. The genes responsible for synthesizing indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid (JA) were expressed at higher levels, along with WRKY transcription factors involved in stress regulation and MYB54 for secondary cell wall synthesis. This study found that BcD1, a rhizobacterium producing VOCs and serine proteases, is capable of triggering the synthesis of diverse secondary metabolites and antioxidant enzymes in plants as a defense strategy against heat stress and pathogen attack.
Collapse
Affiliation(s)
- Sih-Huei Tsai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Yi-Chun Hsiao
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Peter E Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Chen-En Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Mei-Chun Lai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
5
|
Chen X, Duan Y, Qiao F, Liu H, Huang J, Luo C, Chen X, Li G, Xie K, Hsiang T, Zheng L. A secreted fungal effector suppresses rice immunity through host histone hypoacetylation. THE NEW PHYTOLOGIST 2022; 235:1977-1994. [PMID: 35592995 DOI: 10.1111/nph.18265] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/07/2022] [Indexed: 05/05/2023]
Abstract
Histone acetylation is a critical epigenetic modification that regulates plant immunity. Fungal pathogens secrete effectors that modulate host immunity and facilitate infection, but whether fungal pathogens have evolved effectors that directly target plant histone acetylation remains unknown. Here, we identified a secreted protein, UvSec117, from the rice false smut fungus, Ustilaginoidea virens, as a key effector that can target the rice histone deacetylase OsHDA701 and negatively regulates rice broad-spectrum resistance against rice pathogens. UvSec117 disrupts host immunity by recruiting OsHDA701 to the nucleus and enhancing OsHDA701-modulated deacetylation, thereby reducing histone H3K9 acetylation levels in rice plants and interfering with defense gene activation. Host-induced gene silencing of UvSec117 promotes rice resistance to U. virens, thus providing an alternative way for developing rice false smut-resistant plants. This is the first direct evidence demonstrating that a fungal effector targets a histone deacetylase to suppress plant immunity. Our data provided insight into a counter-defense mechanism in a plant pathogen that inactivates host defense responses at the epigenetic level.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhang Duan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fugang Qiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoxi Luo
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaolin Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Negi N, Khurana P. A salicylic acid inducible mulberry WRKY transcription factor, MiWRKY53 is involved in plant defence response. PLANT CELL REPORTS 2021; 40:2151-2171. [PMID: 33997916 DOI: 10.1007/s00299-021-02710-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
MiWRKY53 is expressed in response to various stresses and hormones. Although it is localized in the nucleus, it shows no transcriptional activation. Role of SA-mediated plant defence response is demonstrated. WRKY transcription factors are one the largest gene families in plants involved in almost every process in plants including development, physiological processes, and stress response. Salicylic acid (SA) is key regulator of biotic stress against various pathogens in plants acting via its multiple mechanisms to induce defence response. Herein, we have identified and functionally validated WRKY53 from mulberry (Morus indica var. K2). MiWRKY53 expressed differentially in response to different stress and hormonal treatments. MiWRKY53 belongs to group III of WKRY gene family, localized in nucleus, and lacks transcriptional activation activity in yeast. Hormone responsive behaviour of MiWRKY53 Arabidopsis overexpression (OE) transgenics preferentially was noted in root growth assay in response to Salicylic acid (SA). Arabidopsis overexpression plants also displayed alteration in leaf phenotype having wider leaves than the wild-type plants. PR-1 transcripts were higher in MiWRKY53 Arabidopsis OE plants and they displayed resistance towards biotrophic pathogen Pseudomonas syringae PstDC3000. MiWRKY53 Mulberry OE transgenics also depicted SA-responsive behaviour. Several hormones and stress-related cis-acting elements were also identified in the 1.2-Kb upstream regulatory region (URR) of MiWRKY53. Functional characterization of full-length promoter region revealed that it is induced by SA and further analysis of deletion constructs helped in the identification of minimal promoter responsible for its inducibility by SA. Altogether, the findings from this study point towards the SA preferential behaviour of MiWRKY53 and its function as regulator of plant defence response through SA-mediated mechanisms.
Collapse
Affiliation(s)
- Nisha Negi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
7
|
Ji R, Fu J, Shi Y, Li J, Jing M, Wang L, Yang S, Tian T, Wang L, Ju J, Guo H, Liu B, Dou D, Hoffmann AA, Zhu-Salzman K, Fang J. Vitellogenin from planthopper oral secretion acts as a novel effector to impair plant defenses. THE NEW PHYTOLOGIST 2021; 232:802-817. [PMID: 34260062 DOI: 10.1111/nph.17620] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Jianmei Fu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jing Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Maofeng Jing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Shiying Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Tian Tian
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Jiafei Ju
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Bin Liu
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, 510640, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210014, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| |
Collapse
|
8
|
Choi N, Im JH, Lee E, Lee J, Choi C, Park SR, Hwang DJ. WRKY10 transcriptional regulatory cascades in rice are involved in basal defense and Xa1-mediated resistance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3735-3748. [PMID: 32227093 DOI: 10.1093/jxb/eraa135] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
WRKY proteins play essential roles as negative or positive regulators of pathogen defense. This study explored the roles of different OsWRKY proteins in basal defense and Xa1-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) infection in rice. Assays of disease in OsWRKY10KD and OsWRKY88KD lines following infection with an incompatible Xoo race, which induced Xa1-mediated resistance in wild-type plants, showed that OsWRKY10 and OsWRKY88 were positive regulators of Xa1-mediated resistance. OsWRKY10 also acted as a positive regulator in basal defense by directly or indirectly activating transcription of defense-related genes. OsWRKY10 activated the OsPR1a promoter by binding to specific WRKY binding sites. Two transcriptional regulatory cascades of OsWRKY10 were identified in basal defense and Xa1-mediated resistance. In the first transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10 whereas OsWRKY51 acted upstream. OsWRKY10 activated OsPR1a in two distinct ways: by binding to its promoter and, at the same time, by indirect activation through OsWRKY47. In the second transcriptional regulatory cascade, OsWRKY47 acted downstream of OsWRKY10, and OsWRKY88 acted upstream. These OsWRKY10 transcriptional regulatory cascades played important roles in basal defense and Xa1-mediated resistance to enable the mounting of a rapid immune response against pathogens.
Collapse
Affiliation(s)
- Naeyeoung Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Jong Hee Im
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Eunhye Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Jinjeong Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Changhyun Choi
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, Korea
| |
Collapse
|
9
|
John Lilly J, Subramanian B. Gene network mediated by WRKY13 to regulate resistance against sheath infecting fungi in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:269-282. [PMID: 30824005 DOI: 10.1016/j.plantsci.2018.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 05/05/2023]
Abstract
OsWRKY13 TF gene is known to play a regulatory role of signaling in physiological pathways related to either development or disease resistance in rice plants. Rice cultivars IR 50 and TRY 3, resistant and susceptible respectively to sheath blight, TRY 3 and CO 43 resistant and susceptible respectively to sheath rot were challenged with fungal pathogens and disease scoring was carried out. Percent Disease Index (PDI) was significantly higher in susceptible varieties than resistant varieties. RT-PCR and qPCR analyses of WRKY13 using RNA extracted from the plant tissues revealed higher WRKY13 expression in resistant varieties (both diseases) upon pathogen challenge compared to uninfected control and also the susceptible varieties. To compute and evaluate the possible molecular mechanism for observed resistance correlated to WRKY13 gene expression, rice gene expression profiles against bacterial leaf blight and leaf blast disease from ROAD database were used to prioritize the locus IDs that were used as input in RiceNet v2 tool. The expression of WRKY13-regulated TIFY9 gene was predicted and validated using RT-PCR and qRT-PCR along with WRKY12 and PR2. All three genes showed induced expression in R. solani challenged sheath blight resistant variety. WRKY12 and PR2 expression in S. oryzae challenged sheath rot resistant variety was higher. Agrobacterium mediated transformation was carried out in rice plants using overexpression construct of WRKY13 (agroinfection in seeds of varieties susceptible to sheath blight and sheath rot, followed by selection in antibiotic media, germinating and hardening of putative transgenic lines). Based on qPCR analysis, the expression level of WRKY13 and the co-expression levels of WRKY12, TIFY9 and PR2 were found higher in PCR-positive T1 plants compared to wild-type. Infection bioassays in the transgenic plants of both varieties revealed enhanced resistance to the pathogens. A mechanism by which WRKY13 would influence the MAPK cascade with TIFY9 acting as a mediator, is proposed.
Collapse
Affiliation(s)
- Jimmy John Lilly
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Babu Subramanian
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
10
|
In silico Analysis of qBFR4 and qLBL5 in Conferring Quantitative Resistance Against Rice Blast. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, Lee S, Hwang DJ. Rice WRKY11 Plays a Role in Pathogen Defense and Drought Tolerance. RICE (NEW YORK, N.Y.) 2018; 11:5. [PMID: 29330772 PMCID: PMC5766476 DOI: 10.1186/s12284-018-0199-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/02/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are frequently subjected to abiotic and biotic stresses, and WRKY proteins play a pivotal role in the response to such stress. OsWRKY11 is induced by pathogens, drought, and heat, suggesting a function in biotic and abiotic stress responses. RESULTS This study identified OsWRKY11, a member of WRKY group IIc. It is a transcriptional activator that localized to the nucleus. Ectopic expression of OsWRKY11 resulted in enhanced resistance to a bacterial pathogen, Xanthomonas oryzae pv. oryzae; resistance was compromised in transgenic lines under-expressing OsWRKY11. Ectopic expression of OsWRKY11 resulted in constitutive expression of defense-associated genes, whereas knock-down (kd) of OsWRKY11 reduced expression of defense-associated genes during pathogen attack, suggesting that OsWRKY11 activates defense responses. OsWRKY11 bound directly to the promoter of CHITINASE 2, a gene associated with defense, and activated its transcription. In addition, ectopic expression of OsWRKY11 enhanced tolerance to drought stress and induced constitutive expression of drought-responsive genes. Induction of drought-responsive genes was compromised in OsWRKY11-kd plants. OsWRKY11 also bound directly to the promoter of a drought-responsive gene, RAB21, activating its transcription. In addition, OsWRKY11 protein levels were controlled by the ubiquitin-proteasome system. CONCLUSION OsWRKY11 integrates plant responses to pathogens and abiotic stresses by positively modulating the expression of biotic and abiotic stress-related genes.
Collapse
Affiliation(s)
- Heyoung Lee
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Jooyoung Cha
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Changhyun Choi
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Naeyoung Choi
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Hyun-So Ji
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Seungbum Lee
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Jeonju, 54874, Republic of Korea.
| |
Collapse
|
12
|
Choi NY, Lee E, Lee SG, Choi CH, Park SR, Ahn I, Bae SC, Hwang CH, Hwang DJ. Genome-Wide Expression Profiling of OsWRKY Superfamily Genes during Infection with Xanthomonas oryzae pv. oryzae Using Real-Time PCR. FRONTIERS IN PLANT SCIENCE 2017; 8:1628. [PMID: 28979285 PMCID: PMC5611491 DOI: 10.3389/fpls.2017.01628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 05/28/2023]
Abstract
WRKY transcription factors (TFs) are involved in regulating a range of biological processes such as growth, development, and the responses to biotic and abiotic stresses. Genome-wide expression profiling of OsWRKY TF superfamily genes in rice after infection with Xanthomonas oryzae pv. oryzae (Xoo) was performed to elucidate the function of OsWRKY TFs in the interaction between rice and Xoo. Of the 111 OsWRKY TF genes tested, the transcription of 94 genes changed after Xoo infection. The OsWRKY TF genes were classified into eight types according to their expression profiles. Eighty-two genes in Groups I, II, III, IV, VII were up-regulated after exposure to a compatible or an incompatible race of Xoo. Examination of salicylic acid (SA)-deficient rice lines revealed that SA was involved in Xa1-mediated resistance to Xoo infection. OsWRKY TF genes involved in Xa1-mediated resistance were classified according to their SA-dependent or -independent expression. In SA-deficient rice, the expression of 12 of 57 OsWRKY TF genes involved in Xa1-mediated resistance was compromised. Of these six OsWRKY TF genes were induced by SA. OsWRKY88, an example of a gene possibly involved in SA-dependent Xa1-mediated resistance, activated defense related genes and increased resistance to Xoo. Thus, expression profiling of OsWRKY TF genes may help predict the functions of OsWRKY TF genes involved in Xa1-mediated resistance.
Collapse
Affiliation(s)
- Nae Young Choi
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
- Department of Crop Science and Biotechnology, Dankook UniversityCheonan, South Korea
| | - Eunhye Lee
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Sang Gu Lee
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Chang Hyun Choi
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Ilpyung Ahn
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Shin Chul Bae
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| | - Cheol Ho Hwang
- Department of Crop Science and Biotechnology, Dankook UniversityCheonan, South Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Science, Rural Development AdministrationJeonju, South Korea
| |
Collapse
|
13
|
Zhang L, Gu L, Ringler P, Smith S, Rushton PJ, Shen QJ. Three WRKY transcription factors additively repress abscisic acid and gibberellin signaling in aleurone cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:214-22. [PMID: 26025535 DOI: 10.1016/j.plantsci.2015.04.014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/14/2015] [Accepted: 04/19/2015] [Indexed: 05/06/2023]
Abstract
Members of the WRKY transcription factor superfamily are essential for the regulation of many plant pathways. Functional redundancy due to duplications of WRKY transcription factors, however, complicates genetic analysis by allowing single-mutant plants to maintain wild-type phenotypes. Our analyses indicate that three group I WRKY genes, OsWRKY24, -53, and -70, act in a partially redundant manner. All three showed characteristics of typical WRKY transcription factors: each localized to nuclei and yeast one-hybrid assays indicated that they all bind to W-boxes, including those present in their own promoters. Quantitative real time-PCR (qRT-PCR) analyses indicated that the expression levels of the three WRKY genes varied in the different tissues tested. Particle bombardment-mediated transient expression analyses indicated that all three genes repress the GA and ABA signaling in a dosage-dependent manner. Combination of all three WRKY genes showed additive antagonism of ABA and GA signaling. These results suggest that these WRKY proteins function as negative transcriptional regulators of GA and ABA signaling. However, different combinations of these WRKY genes can lead to varied strengths in suppression of their targets.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Lingkun Gu
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Patricia Ringler
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stanley Smith
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Paul J Rushton
- Texas A&M AgriLife Research and Extension Center, Dallas, TX 75252, USA
| | - Qingxi J Shen
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
14
|
Coqueiro DSO, de Souza AA, Takita MA, Rodrigues CM, Kishi LT, Machado MA. Transcriptional profile of sweet orange in response to chitosan and salicylic acid. BMC Genomics 2015; 16:288. [PMID: 25887907 PMCID: PMC4415254 DOI: 10.1186/s12864-015-1440-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 03/06/2015] [Indexed: 02/07/2023] Open
Abstract
Background Resistance inducers have been used in annual crops as an alternative for disease control. Wood perennial fruit trees, such as those of the citrus species, are candidates for treatment with resistance inducers, such as salicylic acid (SA) and chitosan (CHI). However, the involved mechanisms in resistance induced by elicitors in citrus are currently few known. Results In the present manuscript, we report information regarding the transcriptional changes observed in sweet orange in response to exogenous applications of SA and CHI using RNA-seq technology. More genes were induced by SA treatment than by CHI treatment. In total, 1,425 differentially expressed genes (DEGs) were identified following treatment with SA, including the important genes WRKY50, PR2, and PR9, which are known to participate in the salicylic acid signaling pathway, and genes involved in ethylene/Jasmonic acid biosynthesis (ACS12, AP2 domain-containing transcription factor, and OPR3). In addition, SA treatment promoted the induction of a subset of genes involved in several metabolic processes, such as redox states and secondary metabolism, which are associated with biotic stress. For CHI treatment, there were 640 DEGs, many of them involved in secondary metabolism. For both SA and CHI treatments, the auxin pathway genes were repressed, but SA treatment promoted induction in the ethylene and jasmonate acid pathway genes, in addition to repressing the abscisic acid pathway genes. Chitosan treatment altered some hormone metabolism pathways. The DEGs were validated by quantitative Real-Time PCR (qRT-PCR), and the results were consistent with the RNA-seq data, with a high correlation between the two analyses. Conclusions We expanded the available information regarding induced defense by elicitors in a species of Citrus that is susceptible to various diseases and identified the molecular mechanisms by which this defense might be mediated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1440-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danila Souza Oliveira Coqueiro
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis, São Paulo, Brasil. .,Universidade Federal da Bahia, UFBA, Vitória da Conquista, Bahia, Brasil.
| | - Alessandra Alves de Souza
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis, São Paulo, Brasil.
| | - Marco Aurélio Takita
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis, São Paulo, Brasil.
| | - Carolina Munari Rodrigues
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis, São Paulo, Brasil.
| | | | - Marcos Antonio Machado
- Laboratório de Biotecnologia, Centro de Citricultura Sylvio Moreira, IAC, Cordeirópolis, São Paulo, Brasil.
| |
Collapse
|
15
|
Cheng H, Liu H, Deng Y, Xiao J, Li X, Wang S. The WRKY45-2 WRKY13 WRKY42 transcriptional regulatory cascade is required for rice resistance to fungal pathogen. PLANT PHYSIOLOGY 2015; 167:1087-99. [PMID: 25624395 PMCID: PMC4348788 DOI: 10.1104/pp.114.256016] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/23/2015] [Indexed: 05/20/2023]
Abstract
Blast caused by fungal Magnaporthe oryzae is a devastating disease of rice (Oryza sativa) worldwide, and this fungus also infects barley (Hordeum vulgare). At least 11 rice WRKY transcription factors have been reported to regulate rice response to M. oryzae either positively or negatively. However, the relationships of these WRKYs in the rice defense signaling pathway against M. oryzae are unknown. Previous studies have revealed that rice WRKY13 (as a transcriptional repressor) and WRKY45-2 enhance resistance to M. oryzae. Here, we show that rice WRKY42, functioning as a transcriptional repressor, suppresses resistance to M. oryzae. WRKY42-RNA interference (RNAi) and WRKY42-overexpressing (oe) plants showed increased resistance and susceptibility to M. oryzae, accompanied by increased or reduced jasmonic acid (JA) content, respectively, compared with wild-type plants. JA pretreatment enhanced the resistance of WRKY42-oe plants to M. oryzae. WRKY13 directly suppressed WRKY42. WRKY45-2, functioning as a transcriptional activator, directly activated WRKY13. In addition, WRKY13 directly suppressed WRKY45-2 by feedback regulation. The WRKY13-RNAi WRKY45-2-oe and WRKY13-oe WRKY42-oe double transgenic lines showed increased susceptibility to M. oryzae compared with WRKY45-2-oe and WRKY13-oe plants, respectively. These results suggest that the three WRKYs form a sequential transcriptional regulatory cascade. WRKY42 may negatively regulate rice response to M. oryzae by suppressing JA signaling-related genes, and WRKY45-2 transcriptionally activates WRKY13, whose encoding protein in turn transcriptionally suppresses WRKY42 to regulate rice resistance to M. oryzae.
Collapse
Affiliation(s)
- Hongtao Cheng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Deng
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Wang Z, Fang H, Chen Y, Chen K, Li G, Gu S, Tan X. Overexpression of BnWRKY33 in oilseed rape enhances resistance to Sclerotinia sclerotiorum. MOLECULAR PLANT PATHOLOGY 2014; 15:677-89. [PMID: 24521393 PMCID: PMC6638750 DOI: 10.1111/mpp.12123] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sclerotinia sclerotiorum causes a devastating disease in oilseed rape (Brassica napus) resulting in a tremendous yield loss worldwide. Studies on various host-pathogen interactions have shown that plant WRKY transcription factors are essential for defence. For the B. napus-S. sclerotiorum interaction, little direct evidence has been found with regard to the biological roles of specific WRKY genes in host resistance. In this study, we isolated a B. napus WRKY gene, BnWRKY33, and found that the gene is highly responsive to S. sclerotiorum infection. Transgenic B. napus plants overexpressing BnWRKY33 showed markedly enhanced resistance to S. sclerotiorum, constitutive activation of the expression of BnPR1 and BnPDF1.2, and inhibition of H2 O2 accumulation in response to pathogen infection. Further, we isolated a mitogen-activated protein (MAP) kinase substrate gene, BnMKS1, and found that not only can BnWRKY33 interact with BnMKS1, which can also interact with BnMPK4, using the yeast two-hybrid assay, consistent with their collective nuclear localization, but also BnWRKY33, BnMKS1 and BnMPK4 are substantially and synergistically expressed in response to S. sclerotiorum infection. In contrast, the three genes showed differential expression in response to phytohormone treatments. Together, these results suggest that BnWRKY33 plays an important role in B. napus defence to S. sclerotiorum, which is most probably associated with the activation of the salicylic acid (SA)- and jasmonic acid (JA)-mediated defence response and inhibition of H2 O2 accumulation, and we propose a potential mechanism in which BnMPK4-BnMKS1-BnWRKY33 exist in a nuclear localized complex to regulate resistance to S. sclerotiorum in oilseed rape.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, 301, Xuefu Road, Zhenjiang, 212013, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5085-97. [PMID: 24043853 PMCID: PMC3830488 DOI: 10.1093/jxb/ert298] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
OsWRKY76 encodes a group IIa WRKY transcription factor of rice. The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid. Green fluorescent protein-fused OsWRKY76 localized to the nuclei in rice epidermal cells. OsWRKY76 showed sequence-specific DNA binding to the W-box element in vitro and exhibited W-box-mediated transcriptional repressor activity in cultured rice cells. Overexpression of OsWRKY76 in rice plants resulted in drastically increased susceptibility to M. oryzae, but improved tolerance to cold stress. Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants. Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes. These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance.
Collapse
Affiliation(s)
- Naoki Yokotani
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuko Sato
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shigeru Tanabe
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Tetsuya Chujo
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takafumi Shimizu
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan
| | - Masaki Shimono
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shoji Sugano
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroshi Takatsuji
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hisatoshi Kaku
- Sakata Seed Corporation, Kimitsu Research Station, 358 Uchikoshi, Sodegaura, Chiba 299-0217, Japan
| | - Eiichi Minami
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
Chen X, Liu J, Lin G, Wang A, Wang Z, Lu G. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. PLANT CELL REPORTS 2013; 32:1589-99. [PMID: 23749099 DOI: 10.1007/s00299-013-1469-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 05/25/2023]
Abstract
Based on Arabidopsis microarray, we found 8 WRKY genes were up-regulated with Oxalic acid (OA) challenge, AtWRKY28 and AtWRKY75 overexpression lines showed enhanced resistance to OA and Sclerotinia sclerotiorum. The WRKY transcription factors are involved in various plant physiological processes and most remarkably in coping with diverse biotic and abiotic stresses. Oxalic acid (OA) is an important pathogenicity-determinant of necrotrophic phytopathogenic fungi, such as Sclerotina sclerotiorum (S. sclerotiorum) and Botrytis cinerea (B. cinerea). The identification of differentially expressed genes under OA stress should facilitate our understanding of the pathogenesis mechanism of OA-producing fungi in host plants, and the mechanism of how plants respond to OA and pathogen infection. Based on Arabidopsis oligo microarray, we found 8 WRKY genes that were up-regulated upon OA challenge. The Arabidopsis plants overexpressing AtWRKY28 and AtWRK75 showed enhanced resistance to OA and S. sclerotiorum simultaneously. Furthermore, our results showed that overexpression of AtWRKY28 and AtWRK75 induced oxidative burst in host plants, which suppressed the hyphal growth of S. sclerotiorum, and consequently inhibited fungal infection. Gene expression profiling indicates that both AtWRKY28 and AtWRKY75 are transcriptional regulators of salicylic acid (SA)- and jasmonic acid/ethylene (JA/ET)-dependent defense signaling pathways, AtWRKY28 and AtWRKY75 mainly active JA/ET pathway to defend Arabidopsis against S. sclerotiorum and oxalic acid stress.
Collapse
Affiliation(s)
- Xiaoting Chen
- Key Laboratory of Bio-pesticide and Chemistry Biology, Ministry of Education, Fuzhou, 350002, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
19
|
Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, Beck-Oldach K, Shavrukov Y, Langridge P, Lopato S. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:659-70. [PMID: 23495849 DOI: 10.1111/pbi.12056] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/22/2013] [Indexed: 05/25/2023]
Abstract
Constitutive over-expression of the TaDREB3 gene in barley improved frost tolerance of transgenic plants at the vegetative stage of plant development, but leads to stunted phenotypes and 3- to 6-week delays in flowering compared to control plants. In this work, two cold-inducible promoters with contrasting properties, the WRKY71 gene promoter from rice and the Cor39 gene promoter from durum wheat, were applied to optimize expression of TaDREB3. The aim of the work was to increase plant frost tolerance and to decrease or prevent negative developmental phenotypes observed during constitutive expression of TaDREB3. The OsWRKY71 and TdCor39 promoters had low-to-moderate basal activity and were activated by cold treatment in leaves, stems and developing spikes of transgenic barley and rice. Expression of the TaDREB3 gene, driven by either of the tested promoters, led to a significant improvement in frost tolerance. The presence of the functional TaDREB3 protein in transgenic plants was confirmed by the detection of strong up-regulation of cold-responsive target genes. The OsWRKY71 promoter-driven TaDREB3 provides stronger activation of the same target genes than the TdCor39 promoter. Analysis of the development of transgenic plants in the absence of stress revealed small or no differences in plant characteristics and grain yield compared with wild-type plants. The WRKY71-TaDREB3 promoter-transgene combination appears to be a promising tool for the enhancement of cold and frost tolerance in crop plants but field evaluation will be needed to confirm that negative development phenotypes have been controlled.
Collapse
Affiliation(s)
- Nataliya Kovalchuk
- Australian Centre for Plant Functional Genomics, University of Adelaide, Adelaide, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qin Z, Lv H, Zhu X, Meng C, Quan T, Wang M, Xia G. Ectopic expression of a wheat WRKY transcription factor gene TaWRKY71-1 results in hyponastic leaves in Arabidopsis thaliana. PLoS One 2013; 8:e63033. [PMID: 23671653 PMCID: PMC3650005 DOI: 10.1371/journal.pone.0063033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/27/2013] [Indexed: 01/11/2023] Open
Abstract
Leaf type is an important trait that closely associates with crop yield. WRKY transcription factors exert diverse regulatory effects in plants, but their roles in the determination of leaf type have not been reported so far. In this work, we isolated a WRKY transcription factor gene TaWRKY71-1 from a wheat introgression line SR3, which has larger leaves, superior growth capacity and higher yield than its parent common wheat JN177. TaWRKY71-1 specifically expressed in leaves, and produced more mRNA in SR3 than in JN177. TaWRKY71-1 localized in the nucleus and had no transcriptional activation activity. TaWRKY71-1 overexpression in Arabidopsis resulted in hyponastic rosette leaves, and the hyponastic strength was closely correlative with the transcription level of the transgene. The spongy mesophyll cells at abaxial side of leaves were drastically compacted by TaWRKY71-1 overexpression. In TaWRKY71-1 overexpression Arabidopsis, the expression of IAMT1 that encodes a methyltransferase converting free indole-3-acetic acid (IAA) to methyl-IAA ester (MeIAA) to alter auxin homeostatic level was induced, and the induction level was dependent on the abundance of TaWRKY71-1 transcripts. Besides, several TCP genes that had found to be restricted by IAMT1 had lower expression levels as well. Our results suggest that TaWRKY71-1 causes hyponastic leaves through altering auxin homeostatic level by promoting the conversion of IAA to MeIAA.
Collapse
Affiliation(s)
- Zhen Qin
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Hongjun Lv
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xinlei Zhu
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Chen Meng
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Taiyong Quan
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mengcheng Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (GX); (MW)
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail: (GX); (MW)
| |
Collapse
|
21
|
Chujo T, Miyamoto K, Shimogawa T, Shimizu T, Otake Y, Yokotani N, Nishizawa Y, Shibuya N, Nojiri H, Yamane H, Minami E, Okada K. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. PLANT MOLECULAR BIOLOGY 2013; 82:23-37. [PMID: 23462973 DOI: 10.1007/s11103-013-0032-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/15/2013] [Indexed: 05/21/2023]
Abstract
WRKY transcription factors form a large family of plant-specific transcription factors and participate in plant defense responses either as positive or negative regulators. In this study, we comprehensively analyzed the role of one of the group IIa WRKY transcription factors in rice, OsWRKY28, in the regulation of basal defense responses to a compatible race of the rice blast fungus Magnaporthe oryzae, strain Ina86-137. The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76. The GFP-OsWRKY28 fusion protein localized mainly in the nuclei of onion epidermal cells, and the maltose-binding protein-fused OsWRKY28 recombinant protein specifically bound to W-box elements. A transient reporter gene assay clearly showed that OsWRKY28 functions as a transcriptional repressor. Overexpression of OsWRKY28 in rice plants resulted in enhanced susceptibility to Ina86-137. Finally, transcriptome analysis revealed that the induction of several defense-related genes in the wild type after Ina86-137 infection was counteracted in OsWRKY28-overexpressing rice plants. These results strongly suggest that OsWRKY28 is a negative regulator of basal defense responses against Ina86-137 and acts as a modulator to maintain the responses at an appropriate level by attenuating the activation of defense-related gene expression levels.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ding B, Bellizzi MDR, Ning Y, Meyers BC, Wang GL. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice. THE PLANT CELL 2012; 24:3783-94. [PMID: 22968716 PMCID: PMC3480302 DOI: 10.1105/tpc.112.101972] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 08/21/2012] [Accepted: 08/27/2012] [Indexed: 05/17/2023]
Abstract
Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.
Collapse
Affiliation(s)
- Bo Ding
- Department of Plant Pathology, Ohio State University, Columbus, Ohio 43210
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Yuese Ning
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Blake C. Meyers
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio 43210
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
23
|
Zhou G, Wang X, Yan F, Wang X, Li R, Cheng J, Lou Y. Genome-wide transcriptional changes and defence-related chemical profiling of rice in response to infestation by the rice striped stem borer Chilo suppressalis. PHYSIOLOGIA PLANTARUM 2011; 143:21-40. [PMID: 21534978 DOI: 10.1111/j.1399-3054.2011.01483.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
How rice defends itself against pathogen infection is well documented, but little is known about how it defends itself against herbivore attack. We measured changes in the transcriptome and chemical profile of rice when the plant is infested by the striped stem borer (SSB) Chilo suppressalis. Infestation by SSBs resulted in changes in the expression levels of 4545 rice genes; this number accounts for about 8% of the genome and is made up of 18 functional groups with broad functions. The largest group comprised genes involved in metabolism, followed by cellular transport, transcription and cellular signaling. Infestation by SSBs modulated many genes responsible for the biosynthesis of plant hormones and plant signaling. Jasmonic acid (JA), salicylic acid (SA) and ethylene were the major hormones that shaped the SSB-induced defence responses of rice. Many secondary signal transduction components, such as those involved in Ca²⁺ signaling and G-protein signaling, receptor and non-receptor protein kinases, and transcription factors were involved in the SSB-induced responses of rice. Photosynthesis and ATP synthesis from photophosphorylation were restricted by SSB feeding. In addition, SSB infestation induced the accumulation of defence compounds, including trypsin proteinase inhibitors (TrypPIs) and volatile organic compounds. These results demonstrate that SSB-induced defences required rice to reconfigure a wide variety of its metabolic, physiological and biochemical processes.
Collapse
Affiliation(s)
- Guoxin Zhou
- National Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. THE PLANT CELL 2010; 22:3177-87. [PMID: 20858844 PMCID: PMC2965542 DOI: 10.1105/tpc.110.078048] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/02/2010] [Accepted: 09/07/2010] [Indexed: 05/18/2023]
Abstract
Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.
Collapse
Affiliation(s)
- Sylvain Marcel
- Department of Plant Molecular Biology, University of Lausane, CH-1015 Lausane, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Peng Y, Bartley LE, Canlas P, Ronald PC. OsWRKY IIa Transcription Factors Modulate Rice Innate Immunity. RICE (NEW YORK, N.Y.) 2010; 3:36-42. [PMID: 21961049 PMCID: PMC3175632 DOI: 10.1007/s12284-010-9039-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 02/03/2010] [Indexed: 05/04/2023]
Abstract
WRKY transcription factors regulate diverse plant processes including responses to biotic stresses. Our previous studies indicate that OsWRKY62, an OsWRKY IIa subfamily member, functions as a negative regulator of the rice defense against Xanthomonas oryzae pv. oryzae. Here, we report that a large inverted repeat construct designed to knock down the expression of the four OsWRKY IIa subfamily members (OsWRKY62, OsWRKY28, OsWRKY71, and OsWRKY76) leads to overexpression of all four genes and disease resistance in some transgenic plants. These phenotypes are stably inherited as reflected by progeny analysis. A pathogenesis-related gene, PR10, is up-regulated in plants overexpressing the OsWRKY IIa genes. These results suggest that OsWRKY IIa proteins interact functionally to modulate plant innate immunity.
Collapse
Affiliation(s)
- Ying Peng
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Laura E. Bartley
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Patrick Canlas
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616 USA
| |
Collapse
|
26
|
Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Sci Bull (Beijing) 2010. [DOI: 10.1007/s11434-009-0710-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Encabo JR, Cabauatan PQ, Cabunagan RC, Satoh K, Lee JH, Kwak DY, De Leon TB, Macalalad RJA, Kondoh H, Kikuchi S, Choi IR. Suppression of two tungro viruses in rice by separable traits originating from cultivar Utri Merah. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1268-1281. [PMID: 19737100 DOI: 10.1094/mpmi-22-10-1268] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Rice tungro disease (RTD) is caused by Rice tungro spherical virus (RTSV) and Rice tungro bacilliform virus (RTBV) transmitted by green leafhoppers. Rice cv. Utri Merah is highly resistant to RTD. To define the RTD resistance of Utri Merah, near-isogenic lines (NIL, BC(5) or BC(6)) developed from Utri Merah and susceptible cv. Taichung Native 1 (TN1) were evaluated for reactions to RTSV and RTBV. TW16 is an NIL (BC(5)) resistant to RTD. RTBV was able to infect both TN1 and TW16 but the levels of RTBV were usually significantly lower in TW16 than in TN1. Infection of RTSV was confirmed in TN1 by a serological test but not in TW16. However, the global gene-expression pattern in an RTSV-resistant NIL (BC(6)), TW16-69, inoculated with RTSV indicated that RTSV can also infect the resistant NIL. Infection of RTSV in TW16 was later confirmed by reverse-transcription polymerase chain reaction but the level of RTSV was considerably lower in TW16 than in TN1. Examination for virus accumulation in another NIL (BC(6)), TW16-1029, indicated that all plants of TW16-1029 were resistant to RTSV, whereas the resistance to RTBV and symptom severity were segregating among the individual plants of TW16-1029. Collectively, these results suggest that RTD resistance of Utri Merah involves suppression of interacting RTSV and RTBV but the suppression trait for RTSV and for RTBV is inherited separately.
Collapse
Affiliation(s)
- Jaymee R Encabo
- Plant Breeding, Genetics, and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hiroyuki K, Terauchi R. Regulation of expression of rice thaumatin-like protein: inducibility by elicitor requires promoter W-box elements. PLANT CELL REPORTS 2008; 27:1521-8. [PMID: 18425517 DOI: 10.1007/s00299-008-0536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/17/2008] [Accepted: 02/29/2008] [Indexed: 05/05/2023]
Abstract
Rice thaumatin-like protein (Rtlp1) is a high-molecular-weight antimicrobial pathogenesis-related protein that plays a role in plant stress response. This study examines transcriptional regulation of Rtlp1 using wild type and transgenic rice plants carrying a beta-glucuronidase (GUS) reporter gene driven by the Rtlp1 promoter (pRtlp1GUS). The Rtlp1 promoter is induced within 6 h after infection with rice blast fungus (Magnaporthe grisea). The Rtlp1 promoter is also induced by salicylic acid (SA), methyl jasmonate (MeJA), wounding or an elicitor from rice blast fungus. The function of the pRtlp1GUS reporter gene was analyzed by deletion mapping and transient expression assays in cell culture. A 120 bp truncated fusion construct with six W-boxes (5'-TGAC-3') demonstrated a strong dose-dependent elicitor-response. These results suggest that W-box elements are required for the response of the Rtlp1 promoter to fungal elicitors.
Collapse
MESH Headings
- Acetates/pharmacology
- Base Sequence
- Cyclopentanes/pharmacology
- DNA, Complementary/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genes, Reporter
- Magnaporthe/pathogenicity
- Molecular Sequence Data
- Oryza/genetics
- Oryza/metabolism
- Oryza/microbiology
- Oxylipins/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Plants, Genetically Modified/microbiology
- Plasmids
- Promoter Regions, Genetic/drug effects
- RNA, Plant/genetics
- Salicylic Acid/pharmacology
Collapse
Affiliation(s)
- Kanzaki Hiroyuki
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate, 024-0003, Japan.
| | | |
Collapse
|
29
|
Stockman G, Boland R. Integration of Plasma Membrane and Nuclear Signaling in Elicitor Regulation of Plant Secondary Metabolism. Nat Prod Commun 2008. [DOI: 10.1177/1934578x0800300803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom represents a valuable source of natural products of commercial interest. These compounds, named secondary metabolites, are not essential for the survival of plants, but confer them some advantages that allow adaptation to changes in their environment. Nevertheless, yields of secondary metabolites are low for commercial purposes, so it has become important to design strategies for increasing their production. Plants manage to adapt to physical changes in their environment, defending themselves against pathogen attack or herbivore wounding. Such aggressive stimuli, also known as elicitors, initiate signaling metabolic cascades that induce accumulation of certain secondary metabolites. Progress has been recently achieved in the understanding of signaling events originating from elicitation and related transcriptional regulation. These advances will allow maneuvering expression of key enzymes implicated in biosynthetic pathways of secondary metabolites, thereby enhancing their accumulation.
Collapse
Affiliation(s)
- Gastón Stockman
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires 8000, Argentina
| | - Ricardo Boland
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Buenos Aires 8000, Argentina
| |
Collapse
|