1
|
Qiu R, Lei Y, Yang Q, Zeng J, Zhou Y, Sun B, Sun Y. Identification and functional analysis of lysophosphatidic acid phosphatase type 6 (ACP6) gene in golden pompano (Trachinotusovatus). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109904. [PMID: 39276813 DOI: 10.1016/j.fsi.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Golden pompano (Trachinotus ovatus), a marine farmed fish, is economically valuable in China. Lysophosphatidic acid phosphatase type 6 (ACP6) is a type of histidine acid phosphatase and plays an important role in regulating host inflammatory responses and anti-cancer effects in mammals. However, its function in teleost remains unknown. The present study aimed to investigate ACP6 function in golden pompano. ACP6 from golden pompano was identified, cloned, and named TroACP6. The open reading frame of TroACP6 was 1275 bp in length, encoding 424 amino acids. The TroACP6 protein shared high sequence identity (43.32%-90.57 %) with the ACP6 of other species. It contained a histidine phosphatase domain with the active site motif "RHGART" and the catalytic dipeptide HD (histidine and aspartate). Meanwhile, TroACP6 mRNA was widely distributed in the various tissues of healthy golden pompano, with the maximum expression in the head kidney. The function of TroACP6 was analyzed both in vitro and in vivo, and the results revealed that the purified recombinant TroACP6 protein exhibited optimum phosphatase activity at pH 6.0 and 50 °C in vitro. Meanwhile, upon Edwardsiella tarda challenge, TroACP6 expression in tissues increased significantly in vivo. In addition, TroACP6 overexpression enhanced the respiratory burst activity and superoxide dismutase activity of head kidney macrophages in vivo. Furthermore, the overexpression and knockdown of TroACP6 in vivo had a significant effect on bacterial infection. In summary, the study findings indicate that TroACP6 in golden pompano is involved in host defense against bacterial infection.
Collapse
Affiliation(s)
- Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang, 473061, China
| | - Yang Lei
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Qiaoli Yang
- Yantai Scibio Biotechnology Co., Ltd, Yantai, 264000, China
| | - Jian Zeng
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Yongcan Zhou
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China
| | - Bin Sun
- Institute of Ocean Research, Fujian Polytechnic Normal University, Fuzhou, 350300, China
| | - Yun Sun
- School of Breeding and Multiplication (Sanya Institute of Breedingand Multiplication), HainanUniversity, Sanya, Hainan, 572022, China.
| |
Collapse
|
2
|
Neville N, Lehotsky K, Klupt KA, Downey M, Jia Z. Polyphosphate attachment to lysine repeats is a non-covalent protein modification. Mol Cell 2024; 84:1802-1810.e4. [PMID: 38701741 DOI: 10.1016/j.molcel.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Polyphosphate (polyP) is a chain of inorganic phosphate that is present in all domains of life and affects diverse cellular phenomena, ranging from blood clotting to cancer. A study by Azevedo et al. described a protein modification whereby polyP is attached to lysine residues within polyacidic serine and lysine (PASK) motifs via what the authors claimed to be covalent phosphoramidate bonding. This was based largely on the remarkable ability of the modification to survive extreme denaturing conditions. Our study demonstrates that lysine polyphosphorylation is non-covalent, based on its sensitivity to ionic strength and lysine protonation and absence of phosphoramidate bond formation, as analyzed via 31P NMR. Ionic interaction with lysine residues alone is sufficient for polyP modification, and we present a new list of non-PASK lysine repeat proteins that undergo polyP modification. This work clarifies the biochemistry of polyP-lysine modification, with important implications for both studying and modulating this phenomenon. This Matters Arising paper is in response to Azevedo et al. (2015), published in Molecular Cell. See also the Matters Arising Response by Azevedo et al. (2024), published in this issue.
Collapse
Affiliation(s)
- Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kirsten Lehotsky
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kody A Klupt
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
3
|
Recio M, de la Torre J, Daddaoua A, Udaondo Z, Duque E, Gavira JA, López‐Sánchez C, Ramos JL. Characterization of an extremophile bacterial acid phosphatase derived from metagenomics analysis. Microb Biotechnol 2024; 17:e14404. [PMID: 38588312 PMCID: PMC11001196 DOI: 10.1111/1751-7915.14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/10/2024] Open
Abstract
Acid phosphatases are enzymes that play a crucial role in the hydrolysis of various organophosphorous molecules. A putative acid phosphatase called FS6 was identified using genetic profiles and sequences from different environments. FS6 showed high sequence similarity to type C acid phosphatases and retained more than 30% of consensus residues in its protein sequence. A histidine-tagged recombinant FS6 produced in Escherichia coli exhibited extremophile properties, functioning effectively in a broad pH range between 3.5 and 8.5. The enzyme demonstrated optimal activity at temperatures between 25 and 50°C, with a melting temperature of 51.6°C. Kinetic parameters were determined using various substrates, and the reaction catalysed by FS6 with physiological substrates was at least 100-fold more efficient than with p-nitrophenyl phosphate. Furthermore, FS6 was found to be a decamer in solution, unlike the dimeric forms of crystallized proteins in its family.
Collapse
Affiliation(s)
- Maria‐Isabel Recio
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Jesús de la Torre
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - Abdelali Daddaoua
- Department of Biochemistry and Molecular Biology II, Pharmacy SchoolGranada UniversityGranadaSpain
| | - Zulema Udaondo
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Estrella Duque
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| | - José Antonio Gavira
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Carmen López‐Sánchez
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias de la TierraGranadaSpain
| | - Juan L. Ramos
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental ProtectionGranadaSpain
| |
Collapse
|
4
|
Lei Y, Fu S, Yang Y, Chen J, Li B, Guo Z, Ye J. Identification and Functional Analysis of Tartrate-Resistant Acid Phosphatase Type 5b (TRAP5b) in Oreochromis niloticus. Int J Mol Sci 2023; 24:7179. [PMID: 37108342 PMCID: PMC10138680 DOI: 10.3390/ijms24087179] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tartrate-resistant acid phosphatase type 5 (TRAP5) is an enzyme that is highly expressed in activated macrophages and osteoclasts and plays important biological functions in mammalian immune defense systems. In the study, we investigated the functions of tartrate-resistant acid phosphatase type 5b from Oreochromis niloticus (OnTRAP5b). The OnTRAP5b gene has an open reading frame of 975 bp, which encodes a mature peptide consisting of 302 amino acids with a molecular weight of 33.448 kDa. The OnTRAP5b protein contains a metallophosphatase domain with metal binding and active sites. Phylogenetic analysis revealed that OnTRAP5b is clustered with TRAP5b of teleost fish and shares a high amino acid sequence similarity with other TRAP5b in teleost fish (61.73-98.15%). Tissues expression analysis showed that OnTRAP5b was most abundant in the liver and was also widely expressed in other tissues. Upon challenge with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro, the expression of OnTRAP5b was significantly up-regulated. Additionally, the purified recombinant OnTRAP5b ((r)OnTRAP5) protein exhibited optimal phosphatase activity at pH 5.0 and an ideal temperature of 50 °C. The Vmax, Km, and kcat of purified (r)OnTRAP5b were found to be 0.484 μmol × min-1 × mg-1, 2.112 mM, and 0.27 s-1 with respect to pNPP as a substrate, respectively. Its phosphatase activity was differentially affected by metal ions (K+, Na+, Mg2+, Ca2+, Mn2+, Cu2+, Zn2+, and Fe3+) and inhibitors (sodium tartrate, sodium fluoride, and EDTA). Furthermore, (r)OnTRAP5b was found to promote the expression of inflammatory-related genes in head kidney macrophages and induce reactive oxygen expression and phagocytosis. Moreover, OnTRAP5b overexpression and knockdown had a significant effect on bacterial proliferation in vivo. When taken together, our findings suggest that OnTRAP5b plays a significant role in the immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Yang Lei
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shengli Fu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou 510631, China
| | - Yanjian Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianlin Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Bingxi Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng Guo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jianmin Ye
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Abdelgalil SA, Kaddah MMY, Duab MEA, Abo-Zaid GA. A sustainable and effective bioprocessing approach for improvement of acid phosphatase production and rock phosphate solubilization by Bacillus haynesii strain ACP1. Sci Rep 2022; 12:8926. [PMID: 35624119 PMCID: PMC9142604 DOI: 10.1038/s41598-022-11448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
There is indeed a tremendous increase in biotechnological production on a global scale, more and more innovative bioprocesses, therefore, require to perform ideally not only in a small lab- but also on large production scales. Efficient microbial process optimization is a significant challenge when accomplishing a variety of sustainable development and bioengineering application objectives. In Egypt's mines, several distinct types of rock phosphate (RP) are utilized as a source of phosphate fertilizers in agriculture. It is more ecologically beneficial to utilize RP bio-solubilization than acidulation. Therefore, this work aimed to strategically scale up the acid phosphatase (ACP) production and RP bio-solubilization by the newly-discovered Bacillus haynesii. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Rotatable Central Composite Design (RCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor revealed an innovative medium formulation. These approaches substantially improved ACP production, reaching 207.6 U L-1 with an ACP yield coefficient Yp/x of 25.2 and a specific growth rate (µ) of 0.07 h-1. The metals Na, Li, and Mn were the most efficiently released from RP during the solubilization process by B. haynesii. The uncontrolled pH culture condition is the most suitable setting for simultaneously improving the ACP and organic acids production. The most abundant organic acid produced through the cultivation process was lactic acid, followed by glutamic acid and hydroxybenzoic acid isomer. The findings of TGA, DSC, SEM, EDS, FTIR, and XRD analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of RP particles.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Mahmoud E A Duab
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering, and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
6
|
Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Shukla SK, Hariharan S, Rao TS. Uranium bioremediation by acid phosphatase activity of Staphylococcus aureus biofilms: Can a foe turn a friend? JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121316. [PMID: 31607578 DOI: 10.1016/j.jhazmat.2019.121316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/13/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, Staphylococcus aureus biofilms, which are considered a foe for being pathogenic, were tested for their uranium bioremediation capacity to find out if they can turn out to be a friend. Acid phosphatase activity, which is speculated to aid in bio-precipitation of U(VI) from uranyl nitrate solution, was assayed in biofilms of seven different S. aureus strains. The presence of acid phosphatase enzyme was detected in the biofilms of all S. aureus strains (in the range of 3.1 ± 0.21 to 26.90 ± 2.32 μi.u./g), and found to be higher when compared to that of their planktonic phenotypes. Among all, S. aureus V329 biofilm showed highest biofilm formation ability along with maximum phosphatase activity (26.9 ± 2.32 μi.u./g of biomass). Addition of phosphate enhanced the U(VI) remediation when treated with uranyl nitrate solution. S. aureus V329 biofilm showed significant U tolerance with only a 3-log reduction when exposed to 10 ppm U(VI) for 1 h. When treated in batch mode, V329 biofilm successfully remediated up to 47% of the 10 ppm U(VI). This new approach using the acid phosphatase from the S. aureus V329 biofilm presents an alternative method for the remediation of uranium contamination.
Collapse
Affiliation(s)
- Sudhir K Shukla
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India
| | - S Hariharan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, 602117, India
| | - T Subba Rao
- Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, 603102, India; Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
8
|
Amoikon TLS, Aké MDF, Djéni NT, Grondin C, Casaregola S, Djè KM. Diversity and enzymatic profiles of indigenous yeasts isolated from three types of palm wines produced in Côte d'Ivoire. J Appl Microbiol 2018; 126:567-579. [PMID: 30418694 DOI: 10.1111/jam.14154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Abstract
AIMS To investigate the genotypic diversity and enzymatic activity of yeast flora isolated from spontaneous fermenting saps of various palm trees (Borassus aethiopum, Raphia hookeri, Elaeis guineensis) tapped for palm wines. METHODS AND RESULTS PCR-restriction fragment length polymorphism of ITS-5.8S rDNA combined to 26S rRNA gene and/or the partial ACT1 gene sequencing were applied for yeast characterization, and their enzymatic profiles assessed by using API ZYM kits. Thirteen genera and 23 species were identified, with the highest diversity (14 species) in raffia wine. Saccharomyces cerevisiae was dominant and common to all palm wines. Some potentially pathogenic yeasts were also isolated. The majority of tested strains displayed high amylo-peptidase, phosphatase, β-glucosidase and α-glucosidase activities and esterase activity. CONCLUSIONS Diverse yeast species colonized palm wines, among which some were related to a specific type of wine and the majority of them have the ability to digest starch, sugar, protein or lipid. SIGNIFICANCE AND IMPACT OF THE STUDY This study is a first step in understanding the significance of indigenous yeast flora of palm wines from Côte d'Ivoire. This knowledge is important as a tool for establishing new indigenous yeast collection; which could be used for the product quality improvement and as enzyme sources for biotechnological purposes.
Collapse
Affiliation(s)
- T L S Amoikon
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire.,Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - M D F Aké
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire
| | - N T Djéni
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire
| | - C Grondin
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - S Casaregola
- Micalis Institute, INRA, AgroParisTech, CIRM-Levures, Université Paris-Saclay, Jouy-en-Josas, France
| | - K M Djè
- Laboratoire de Biotechnologie et Microbiologie des Aliments, Unité de Formation et de Recherche en Sciences et Technologie des Aliments (UFR-STA), Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire
| |
Collapse
|
9
|
Younessi-Hamzekhanlu M, Izadi-Darbandi A, Malboobi MA, Ebrahimi M, Abdipour M, Sparvoli F, Paolo D. Agrobacterium rhizogenes transformed soybeans with AtPAP18 gene show enhanced phosphorus uptake and biomass production. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1473053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Mehdi Younessi-Hamzekhanlu
- Department of Forestry and Medicinal Plants, Ahar Faculty of Agriculture and Natural Resources, University of Tabriz, Ahar, Iran
| | - Ali Izadi-Darbandi
- Department of Agronomy and Plant Breeding Sciences, University of Tehran, College of Aburaihan, Tehran, Iran
| | - Mohammad Ali Malboobi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohsen Ebrahimi
- Department of Agronomy and Plant Breeding Sciences, University of Tehran, College of Aburaihan, Tehran, Iran
| | - Moslem Abdipour
- Kohgiluyeh and Boyerahmad Agricultural and Natural Resources, Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Yasouj, Kohgiluyeh and Boyerahmad, Iran
| | - Francesca Sparvoli
- CNR – National Research Council, Institute of Agricultural Biology and Biotechnology (IBBA, CNR), Milan, Italy
| | - Dario Paolo
- Food technology research unit (CRA-IAA) Council For Agricultural Research and Agricultural Economics Analysis, Rome, Italy
| |
Collapse
|
10
|
Liu G, Qiao Y, Zhang Y, Leng C, Sun J, Chen H, Zhang Y, Li A, Feng Z. Profiles of Streptococcus thermophilus MN-ZLW-002 nutrient requirements in controlled pH batch fermentations. Microbiologyopen 2018; 8:e00633. [PMID: 29682906 PMCID: PMC6391275 DOI: 10.1002/mbo3.633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 11/27/2022] Open
Abstract
This study aimed to evaluate the profiles of Streptococcus thermophilus nutrient requirements to guide the design of media for high cell density culturing. The growth kinetics, physiological state, and nutrient requirement profiles of S. thermophilus were analyzed in chemically defined media. The results showed that the intracellular ATP concentration, H+‐ATPase activity, NADH/NAD+, and NH3 concentrations varied with intracellular pH. The nutrient components with the highest amounts required were Leu and Asp; ascorbic acid and p‐amino benzoic acid; K+ and PO43−; and guanine and uracil. The nutrient components with the largest required ratios were Arg, His, and Met; folic acid, cyanocobalamine, biotin, and nicotinic acid; Ca2+ and Mg2+; and guanine and uracil. In this study, different nutrient components were primarily used at different phase. Trp, Tyr, calcium pantothenate, thiamine, guanine, and Mg2+ were mainly used from late‐lag to midexponential phase. Met, Pro, Phe, Ala, Gly, nicotinic acid, and riboflavin were mainly used from midexponential to late‐exponential phase. The highest bioavailabilities of nutrient components were also found at diverse phase. Met, Leu, Ile, Asn, Glu, Lys, Pro, Gly, riboflavin, nicotinic acid, adenine, uracil, inosine, and Ca2+ had the highest bioavailability from late‐lag to midexponential phase. Lactose, Glu, Asp, His, Trp, Cys, Val, Arg, Phe, Ala, Ser, Thr, Tyr, folate and cobalamin, calcium pantothenate, ascorbic acid, thiamine, biotin, p‐amino benzoic acid, vitamin B6, K+, Mg2+, guanine, xanthine, and PO43− had the highest bioavailability from midexponential to late‐exponential phase. This study elucidated the nutrient requirement profiles with culture time and biomass at various average growth rates during the growth of S. thermophilus. The present results will help to formulate complex media for high cell density cultivation and provide the theoretical basis for S. thermophilus feeding strategies.
Collapse
Affiliation(s)
- Gefei Liu
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yali Qiao
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Cong Leng
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiahui Sun
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongyu Chen
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yan Zhang
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Aili Li
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science of Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
11
|
Shelake RM, Ito Y, Masumoto J, Morita EH, Hayashi H. A novel mechanism of "metal gel-shift" by histidine-rich Ni2+-binding Hpn protein from Helicobacter pylori strain SS1. PLoS One 2017; 12:e0172182. [PMID: 28207866 PMCID: PMC5312948 DOI: 10.1371/journal.pone.0172182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/31/2017] [Indexed: 12/26/2022] Open
Abstract
Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) is a universally used method for determining approximate molecular weight (MW) in protein research. Migration of protein that does not correlate with formula MW, termed "gel shifting" appears to be common for histidine-rich proteins but not yet studied in detail. We investigated "gel shifting" in Ni2+-binding histidine-rich Hpn protein cloned from Helicobacter pylori strain SS1. Our data demonstrate two important factors determining "gel shifting" of Hpn, polyacrylamide-gel concentration and metal binding. Higher polyacrylamide-gel concentrations resulted in faster Hpn migration. Irrespective of polyacrylamide-gel concentration, preserved Hpn-Ni2+ complex migrated faster (3-4 kDa) than apo-Hpn, phenomenon termed "metal gel-shift" demonstrating an intimate link between Ni2+ binding and "gel shifting". To examine this discrepancy, eluted samples from corresponding spots on SDS-gel were analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The MW of all samples was the same (6945.66±0.34 Da) and identical to formula MW with or without added mass of Ni2+. MALDI-TOF-MS of Ni2+-treated Hpn revealed that monomer bound up to six Ni2+ ions non-cooperatively, and equilibrium between protein-metal species was reliant on Ni2+ availability. This corroborates with gradually increased heterogeneity of apo-Hpn band followed by compact "metal-gel shift" band on SDS-PAGE. In view of presented data metal-binding and "metal-gel shift" models are discussed.
Collapse
Affiliation(s)
| | - Yuki Ito
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Junya Masumoto
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eugene Hayato Morita
- Laboratory of Molecular Cell Physiology, Faculty of Agriculture, Ehime University, Matsuyama, Japan
- Department of Chemistry, Faculty of Science, Josai University, Saitama, Japan
| | | |
Collapse
|
12
|
Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of Buffers in Protein Formulations. J Pharm Sci 2016; 106:713-733. [PMID: 27894967 DOI: 10.1016/j.xphs.2016.11.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.
Collapse
Affiliation(s)
| | - Ryan E Holcomb
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Derrick S Katayama
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Brian M Murphy
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Robert W Payne
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Mark Cornell Manning
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
13
|
Talbert JN, Alcaine SD, Nugen SR. Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform. Bioengineered 2016; 7:132-6. [PMID: 27246532 PMCID: PMC4927197 DOI: 10.1080/21655979.2016.1184386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022] Open
Abstract
Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.
Collapse
Affiliation(s)
- Joey N. Talbert
- Department of Food Science and Nutrition, Iowa State University, Ames, IA
| | | | - Sam R. Nugen
- Department of Food Science, Cornell University, Ithaca, NY, USA
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
14
|
Jain R, Garg V, Saxena J. Effect of an Organophosphate Pesticide, Monocrotophos, on Phosphate-Solubilizing Efficiency of Soil Fungal Isolates. Appl Biochem Biotechnol 2014; 175:813-24. [DOI: 10.1007/s12010-014-1309-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/15/2014] [Indexed: 11/29/2022]
|
15
|
Activities of hydrolases and oxidases as influenced by the application of monocrotophos in sandy loam soil of Rajasthan. Appl Biochem Biotechnol 2014; 172:3570-82. [PMID: 24557957 DOI: 10.1007/s12010-014-0789-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 02/10/2014] [Indexed: 10/25/2022]
Abstract
Continuous and repeated use of pesticides affects soil microbial flora and fauna and hence indirectly affects the activity of diverse microbial enzymes present within it. The present study investigates the interaction effect of different concentrations of monocrotophos on diverse hydrolases and oxidases, viz., protease, alkaline phosphatase, acid phosphatase, cellulase, amylase, invertase, arginine deaminase, and dehydrogenase, present in sandy loam soil of Rajasthan under in vitro conditions for 30 days. Soil sample was inoculated with three different concentrations of monocrotophos, viz., 50, 100, and 150 μg kg(-1), and incubated in dark at room temperature. At regular interval of 5 days, sample was withdrawn and enzyme activity was calculated and compared with that of control. Application of various concentrations of monocrotophos enhanced the activity of diverse enzymes present in soil. Therefore, the study revealed synergistic or additive effect of monocrotophos on all the tested microbial enzyme entities. Increasing concentration of the pesticide, however, poses an antagonistic interaction on the increment of different enzymes activities. Therefore, it can be concluded from the study that monocrotophos impose a positive effect at low concentration of pesticide, whereas high concentration poses negative effect on the activity of different enzymes present in soil.
Collapse
|
16
|
Srivastava PK, Anand A. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds. Prep Biochem Biotechnol 2014; 45:33-41. [PMID: 24547935 DOI: 10.1080/10826068.2014.887578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.
Collapse
Affiliation(s)
- Pramod Kumar Srivastava
- a Department of Biochemistry, Faculty of Science , Banaras Hindu University , Varanasi , India
| | | |
Collapse
|
17
|
Hayek SA, Shahbazi A, Worku M, Ibrahim SA. Enzymatic activity of Lactobacillus reuteri grown in a sweet potato based medium with the addition of metal ions. SPRINGERPLUS 2013; 2:465. [PMID: 24083112 PMCID: PMC3786077 DOI: 10.1186/2193-1801-2-465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/11/2013] [Indexed: 11/20/2022]
Abstract
The effect of metal ions on the enzymatic activity of Lactobacillus reuteri was studied. The enzymatic activity was determined spectrophotometrically using the corresponding substrate. In the control group, L. reuteri MF14-C, MM2-3, SD2112, and DSM20016 produced the highest α-glucosidase (40.06 ± 2.80 Glu U/mL), β-glucosidase (17.82 ± 1.45 Glu U/mL), acid phosphatase (20.55 ± 0.74 Ph U/mL), and phytase (0.90 ± 0.05 Ph U/mL) respectively. The addition of Mg(2+) and Mn(2+) led to enhance α-glucosidase produced by L. reuteri MM2-3 by 113.6% and 100.6% respectively. α-Glucosidase produced by MF14-C and CF2-7F was decrease in the presence of K(+) by 65.8 and 69.4% respectively. β-Glucosidase activity of MM7 and SD2112 increased in the presence of Ca(2+) (by 121.8 and 129.8%) and Fe(2+) (by 143.9 and 126.7%) respectively. Acid phosphatase produced by L. reuteri CF2-7F and MM2-3 was enhanced in the presence of Mg(2+), Ca(2+) or Mn(2+) by (94.7, 43.2, and 70.1%) and (63.1, 67.8, and 45.6%) respectively. On the other hand, Fe(2+), K(+), and Na(+) caused only slight increase or decrease in acid phosphatase activity. Phytase produced by L. reuteri MM2-3 was increase in the presence of Mg(2+) and Mn(2+) by 51.0 and 74.5% respectively. Ca(2+) enhanced phytase activity of MM2-3 and DSM20016 by 27.5 and 28.9% respectively. The addition of Na(+) or Fe(2+) decreased phytase activity of L. reuteri. On average, Mg(2+) and Mn(2+) followed by Ca(2+) led to the highest enhancement of the tested enzymes. However, the effect of each metal ion on the enzymatic activity of L. reuteri was found to be a strain dependent. Therefore, a maximized level of a target enzyme could be achieved by selecting a combination of specific strain and specific metal ion.
Collapse
Affiliation(s)
- Saeed A Hayek
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, 163 Carver Hall, Greensboro, Greensboro, NC 27411 USA
| | - Aboghasem Shahbazi
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, 163 Carver Hall, Greensboro, Greensboro, NC 27411 USA
| | - Mulumebet Worku
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, 163 Carver Hall, Greensboro, Greensboro, NC 27411 USA
| | - Salam A Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, 163 Carver Hall, Greensboro, Greensboro, NC 27411 USA
| |
Collapse
|
18
|
Hayek SA, Ibrahim SA. Current Limitations and Challenges with Lactic Acid Bacteria: A Review. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.411a010] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Anand A, Srivastava PK. A molecular description of acid phosphatase. Appl Biochem Biotechnol 2012; 167:2174-97. [PMID: 22684363 DOI: 10.1007/s12010-012-9694-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Acid phosphatase is ubiquitous in distribution in various organisms. Although it catalyzes simple hydrolytic reactions, it is considered as an interesting enzyme in biological systems due to its involvement in different physiological activities. However, earlier reviews on acid phosphatase reveal some fragmentary information and do not give a holistic view on this enzyme. So, the present review summarizes studies on biochemical properties, structure, catalytic mechanism, and applications of acid phosphatase. Recent advancement of acid phosphatase in agricultural and clinical fields is emphasized where it is presented as potent agent for sustainable agricultural practices and diagnostic marker in bone metabolic disorders. Also, its significance in prostate cancer therapies as a therapeutic target has been discussed. At the end, current studies and prospects of immobilized acid phosphatase are included.
Collapse
Affiliation(s)
- Asha Anand
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|