1
|
Gajjar S, Bora V, Patel BM. Repositioning of simvastatin for diabetic colon cancer: role of CDK4 inhibition and apoptosis. Mol Cell Biochem 2023; 478:2337-2349. [PMID: 36703094 DOI: 10.1007/s11010-023-04663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023]
Abstract
There is increased risk of colon cancer in both men and women having diabetes. The objective of the study was to evaluate the role of simvastatin in colon cancer associated with type 2 diabetes mellitus. Diabetes was induced by administering high fat diet with low dose streptozotocin model. 1,2 dimethylhydrazine (25 mg/kg, sc) was used for colon cancer induction. MTT assay, scratch assay, clonogenic assay and annexin V-FITC assay using flow cytometry were performed on HCT-15 cell line. Simvastatin controlled diabetes and colon cancer in animal models and reduced mRNA expression of CDK4 in colon tissues. In vitro studies revealed that simvastatin showed a decrease in cell viability and produced dose dependent decrease in clone formation. There was decrease in the rate of migration with increase in concentration of simvastatin in scratch assay. Moreover, simvastatin induced apoptosis as depicted from annexin V-FITC assay using flow cytometry as well as that revealed by tunnel assay. Our data suggest that simvastatin exhibits protective role in colon cancer associated with diabetes mellitus and acts possibly via down regulation of CDK4 and induction of apoptosis and hence can be considered for repositioning in diabetic colon cancer.
Collapse
Affiliation(s)
- Saumitra Gajjar
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | - Vivek Bora
- Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, 382 481, India
| | | |
Collapse
|
2
|
Gayatri MB, Kancha RK, Patchva D, Velugonda N, Gundeti S, Reddy ABM. Metformin exerts antileukemic effects by modulating lactate metabolism and overcomes imatinib resistance in chronic myelogenous leukemia. FEBS J 2023; 290:4480-4495. [PMID: 37171230 DOI: 10.1111/febs.16818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/30/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023]
Abstract
Imatinib is the frontline treatment option in treating chronic myelogenous leukemia (CML). Hitherto, some patients relapse following treatment. Biochemical analysis of a panel of clonally derived imatinib-resistant cells revealed enhanced glucose uptake and ATP production, suggesting increased rates of glycolysis. Interestingly, increased lactate export was also observed in imatinib-resistant cell lines. Here, we show that metformin inhibits the growth of imatinib-resistant cell lines as well as peripheral blood mononuclear cells isolated from patients who relapsed following imatinib treatment. Metformin exerted these antiproliferative effects by inhibiting MCT1 and MCT4, leading to the inhibition of lactate export. Furthermore, glucose uptake and ATP production were also inhibited following metformin treatment due to the inhibition of GLUT1 and HK-II in an AMPK-dependent manner. Our results also confirmed that metformin-mediated inhibition of lactate export and glucose uptake occurs through the regulation of mTORC1 and HIF-1α. These results delineate the molecular mechanisms underlying metabolic reprogramming leading to secondary imatinib resistance and the potential of metformin as a therapeutic option in CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Metformin/pharmacology
- Metformin/therapeutic use
- Leukocytes, Mononuclear/metabolism
- Cell Line, Tumor
- Drug Resistance, Neoplasm
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Lactic Acid/metabolism
- Glucose/metabolism
- Adenosine Triphosphate
- Apoptosis
Collapse
Affiliation(s)
| | - Rama Krishna Kancha
- Molecular Medicine and Therapeutics Laboratory, CPMB, Osmania University, Hyderabad, India
| | - Dorababu Patchva
- Department of Pharmacology, Apollo Institute of Medical Sciences and Research, Hyderabad, India
| | - Nagaraj Velugonda
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Sadashivudu Gundeti
- Department of Medical Oncology, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Aramati B M Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
3
|
Park D, Lee S, Boo H. Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells. Dev Reprod 2023; 27:77-89. [PMID: 37529015 PMCID: PMC10390098 DOI: 10.12717/dr.2023.27.2.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.
Collapse
Affiliation(s)
- Deokbae Park
- Corresponding author Deokbae
Park, Department of Histology, Jeju National University College of Medicine,
Jeju 63243, Korea. Tel: +82-64-754-3827, Fax:
+82-64-702-2687, E-mail:
| | | | | |
Collapse
|
4
|
Fatehi R, Rashedinia M, Akbarizadeh AR, Zamani M, Firouzabadi N. Metformin enhances anti-cancer properties of resveratrol in MCF-7 breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem Biophys Res Commun 2023; 644:130-139. [PMID: 36641965 DOI: 10.1016/j.bbrc.2022.12.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/26/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Breast cancer is the fifth leading cause of death, worldwide affecting both genders. Accumulating evidence suggests that metformin, an oral hypoglycemic agent used in the management of type 2 diabetes, exerts anti-tumor effects in many cancers, including the breast cancer. Resveratrol, a natural product found abundantly in many fruits, exhibits marked cytotoxic and pro-oxidant effects. This study was designed to investigate the effect of metformin in combination with resveratrol and cisplatin in MCF-7 cells. Study groups were as follows: untreated control group, single treatment groups (metformin, resveratrol, and cisplatin), double treatment groups (metformin + resveratrol, metformin + cisplatin, and cisplatin + resveratrol) and triple treatment groups (metformin + resveratrol + cisplatin). Our results indicated that metformin inhibits proliferation of MCF-7 cells, an effect that was associated with ROS production and G0/G1 cell cycle arrest, but not apoptosis. Moreover, resveratrol suppressed the proliferation of MCF-7 cells by induction of apoptosis as well as cell cycle arrest. Notably, a significant inhibitory effect in the co-treatment of metformin, resveratrol, and cisplatin was observed which was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. In conclusion, our results advocate the anti-cancer properties of metformin and resveratrol on MCF-7 cell s via induction of cell cycle arrest. Additionally, synergistic anti-cancer effects of metformin in a triple combination with cisplatin and resveratrol was attributed to induction of autophagy-mediated cell death and apoptosis along cell cycle arrest. Based on our findings it is proposed that patients may benefit from addition of a drug with a safe profile to conventional anticancer therapies.
Collapse
Affiliation(s)
- Reihaneh Fatehi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Reza Akbarizadeh
- Department of Quality Control, Food and Drug, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Yang M, Li J, Liu Z, Zhang H, Liu J, Liu Y, Zhuang A, Zhou H, Gu P, Fan X. An injectable vitreous substitute with sustained release of metformin for enhanced uveal melanoma immunotherapy. Biomater Sci 2022; 10:7077-7092. [PMID: 36326609 DOI: 10.1039/d2bm01058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Uveal melanoma (UM) is the most prevalent primary intraocular malignant tumor in adults with a high rate of metastasis. Conventional treatments have limited effects on metastasis and cause permanent ocular tissue defects. Here, a novel strategy based on an injectable vitreous substitute with sustained metformin release ability (IVS-Met) was reported for efficient UM therapy as well as for repairing vitreous deficiency and preserving visual function. IVS-Met showed an excellent long-term anti-tumor effect by direct tumor attack and modulation of the tumor microenvironment (TME). IVS-Met reduced the proportion of pro-tumor M2 tumor-associated macrophages and induced the pro-inflammatory M1 phenotype, thus reversing the immunosuppressive TME and eliciting robust anti-tumor immune responses. Notably, IVS-Met demonstrated high performance in the inhibition of UM metastasis and significantly extended the survival time of mice. In addition, the vitreous substitute achieved facile administration via direct injection and exhibited excellent rheological and optical properties with the key parameters very close to those of the vitreous body to repair vitreous deficiency and preserve visual function. In summary, this strategy has realized effective UM treatment while retaining eyeballs and vision for the first time, revealing great potential for translation to clinical practice.
Collapse
Affiliation(s)
- Muyue Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Zeyang Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jin Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ai Zhuang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Huifang Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China. .,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
6
|
Mitochondrial oxidative phosphorylation is dispensable for survival of CD34+ chronic myeloid leukemia stem and progenitor cells. Cell Death Dis 2022; 13:384. [PMID: 35444236 PMCID: PMC9021200 DOI: 10.1038/s41419-022-04842-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022]
Abstract
AbstractChronic myeloid leukemia (CML) are initiated and sustained by self-renewing malignant CD34+ stem cells. Extensive efforts have been made to reveal the metabolic signature of the leukemia stem/progenitor cells in genomic, transcriptomic, and metabolomic studies. However, very little proteomic investigation has been conducted and the mechanism regarding at what level the metabolic program was rewired remains poorly understood. Here, using label-free quantitative proteomic profiling, we compared the signature of CD34+ stem/progenitor cells collected from CML individuals with that of healthy donors and observed significant changes in the abundance of enzymes associated with aerobic central carbonate metabolic pathways. Specifically, CML stem/progenitor cells expressed increased tricarboxylic acid cycle (TCA) with decreased glycolytic proteins, accompanying by increased oxidative phosphorylation (OXPHOS) and decreased glycolysis activity. Administration of the well-known OXPHOS inhibitor metformin eradicated CML stem/progenitor cells and re-sensitized CD34+ CML cells to imatinib in vitro and in patient-derived tumor xenograft murine model. However, different from normal CD34+ cells, the abundance and activity of OXPHOS protein were both unexpectedly elevated with endoplasmic reticulum stress induced by metformin in CML CD34+ cells. The four major aberrantly expressed protein sets, in contrast, were downregulated by metformin in CML CD34+ cells. These data challenged the dependency of OXPHOS for CML CD34+ cell survival and underlined the novel mechanism of metformin. More importantly, it suggested a strong rationale for the use of tyrosine kinase inhibitors in combination with metformin in treating CML.
Collapse
|
7
|
Salimi-Jeda A, Ghabeshi S, Gol Mohammad Pour Z, Jazaeri EO, Araiinejad M, Sheikholeslami F, Abdoli M, Edalat M, Abdoli A. Autophagy Modulation and Cancer Combination Therapy: A Smart Approach in Cancer Therapy. Cancer Treat Res Commun 2022; 30:100512. [PMID: 35026533 DOI: 10.1016/j.ctarc.2022.100512] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The autophagy pathway is the process whereby cells keep cellular homeostasis and respond to stress via recycling their damaged cellular proteins, organelles, and other cellular components. In the context of cancer, autophagy is a dual-edge sword pro- and anti-tumorigenic role depending on the oncogenic context and stage of tumorigenesis. Cancer cells have a higher dependency on autophagy compared with normal cells because of cellular damages and high demands for energy. The carbon, nitrogen, and molecular oxygen are building blocks for highly proliferative cancer cells which extremely depend on glutaminolysis and aerobic glycolysis; when a cancer cell is restricted to glucose and glutamine, it initiates to activate a stress response pathway using autophagy. Oncogenic tyrosine kinases (OncTKs) and receptor tyrosine kinases (RTKs) activation result in autophagy modulation through activation of the PI3K/AKT/mTORC1 and RAS/MAPK signaling pathways. Targeted inhibition of tyrosine kinases (TKs) and RTKs have recently been considered as cancer therapy but drug resistance and cancer relapse continue to be a major limitation of tyrosine kinase inhibitors (TKIs). Manipulation of autophagy pathway along with TKIs may be a promising strategy to circumvent unknown existing drug-resistance mechanisms that may emerge in a treated patient. In this way, clinical trials are ongoing to modulate autophagy to treat cancer. This review aims to summarize the combination therapy of autophagy affecting compounds with anticancer drugs which target cell signaling pathways, metabolism mechanisms, and epigenetics modification to improve therapeutic efficacy against cancers.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soad Ghabeshi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ehsan Ollah Jazaeri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran
| | - Mehrdad Araiinejad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Farzaneh Sheikholeslami
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran Iran
| | - Mohsen Abdoli
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Edalat
- Department of medical laboratory sciences, Paramedical Sciences, Tabriz University of medical sciences, Tabriz, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, 13169-43551, Iran.
| |
Collapse
|
8
|
Qi X, Zuo J, Yan D, Hu G, Wang R, Chen J, Fu J. A NOD-Like Receptor Signaling-Based Gene Signature Identified as a
Novel Prognostic Biomarker for Predicting Overall Survival of Colorectal
Cancer Patients. Curr Bioinform 2022. [DOI: 10.2174/1574893616666211005122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Colorectal Cancer (CRC) is the most frequently diagnosed gastrointestinal
tract malignant tumor worldwide, which is closely associated with distant metastasis and poor prognosis.
Due to high degree of heterogeneity, reliable prognostic biomarkers are urgently needed to guide the
therapeutic intervention of CRC patients.
Objective:
The present study aimed to develop a NOD-Like Receptors (NLRs) signaling-based gene
signature that can successfully predict the overall survival of CRC patients.
Methods:
Firstly, differentially expressed NLR signaling-related genes were identified between primary
and metastatic human CRC samples. Genes with prognostic value were then screened through univariate
Cox regression analysis. Next, the NLR signaling-based prognostic signature was constructed by
LASSO-penalized Cox regression analysis, and its predictive ability was further confirmed in an independent
cohort. Furthermore, functional studies including GO, GSEA, ssGSEA and chemotherapeutic
response analyses were performed to explore the role of the NLR signaling-based signature in CRC
pathogenesis and therapy.
Results:
The established prognostic signature that consisted of 7 NLR signaling-related genes can effectively
stratify the high-risk and low-risk CRC patients in both training and validation cohorts. Moreover,
the signature proved to be an independent indicator of overall survival in CRC patients. Functional annotation
and chemotherapeutic response analyses showed that the signature was closely associated with
immune status and chemotherapeutic sensitivity of CRC patients.
Conclusion:
The novel NLR signaling-based gene signature could serve as a potential tool for survival
prediction and therapeutic evaluation, thereby contributing to the personalized prognostic management
of CRC patients.
Collapse
Affiliation(s)
- Xin Qi
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| | - Jiachen Zuo
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| | - Donghui Yan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, 215123 Suzhou, China
| | - Rui Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| | - Jiajia Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| | - Jiaolong Fu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215011 Suzhou, China
| |
Collapse
|
9
|
Chen Z, Zige L, Sai Kiang Y, Desheng C. Experimental Study on the Inhibition of RANKL-Induced Osteoclast Differentiation In Vitro by Metformin Hydrochloride. Int J Endocrinol 2022; 2022:6778332. [PMID: 36132487 PMCID: PMC9484974 DOI: 10.1155/2022/6778332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Establishment of an in vitro osteoclast induction model under nuclear factor-κB receptor activator ligand (RANKL) induction for investigating the effect of metformin hydrochloride (Met) on osteoclast differentiation. METHODS RANKL induced the differentiation of mouse bone marrow macrophages (BMMs) into osteoclasts in vitro, and Met was added at different concentrations for intervention during the induction process. After 5 d of culture and fixation, the number of osteoclasts was counted by tartrate-resistant acid phosphatase (TRAP) staining and F-actin staining, and the function of osteoclasts was examined with hydroxyapatite-coated plates. Real-time fluorescence quantitative PCR was performed to detect the expression of Cathepsin K, osteoclast associated receptor (OSCAR), and TRAP, and the effect of Met on Mitogen-activated protein kinases (MAPK) signaling pathway was detected by Western blot. RESULTS Met significantly reduced osteoclast formation, F-actin ring formation, bone resorption, and the expression of relevant genes Cathepsin K, OSCAR, and TRAP. The Western blotting study demonstrated that Met inhibited the MAPK signaling pathway by decreasing the phosphorylation of extracellular regulated protein kinase (ERK), which plays important roles in osteoclast formation. CONCLUSION Metformin hydrochloride inhibited the differentiation of osteoclasts, decreased the bone resorption area, and suppressed phosphorylation of ERK in vitro.
Collapse
Affiliation(s)
- Zhang Chen
- Department of Orthopedic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Liu Zige
- School of Clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yeow Sai Kiang
- Department of Orthopedic Surgery, Sengkang General Hospital, Singapore
| | - Chen Desheng
- Department of Orthopedic Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| |
Collapse
|
10
|
Thabet NA, El-Khouly D, Sayed-Ahmed MM, Omran MM. Thymoquinone chemosensitizes human colorectal cancer cells to imatinib via uptake/efflux genes modulation. Clin Exp Pharmacol Physiol 2021; 48:911-920. [PMID: 33783002 DOI: 10.1111/1440-1681.13476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Imatinib (IM) is a pharmaceutical drug that inhibits tyrosine kinase enzymes that are responsible for the activation of many proteins by signal transduction cascades as c-Abl, c-Kit and the platelet-derived growth factor (PDGF) receptor. Thymoquinone (TQ) is an active constituent of Nigella sativa seeds. Thymoquinone benefits are attributed to its medicinal uses as antioxidant, anticancer and antimicrobial agent. This study aimed to investigate the impact of using TQ with IM in the HCT116 human colorectal cancer cell line model. The HCT116 cells were treated with IM or/and TQ in non-constant ratios, in which the fixed concentrations of TQ (5, 10 or 20 µmol/L) were co-treated with various concentrations of IM (7.5-120 µmol/L) for 24, 48 and 72 hours. Imatinib-TQ interaction was analysed using CompuSyn software. The IC50 values for IM were 105, 72 μmol/L after 48 and 72 hours, respectively, and were significantly reduced to 7.3, 7 and 5.5 μmol/L after combination with TQ (10 μmol/L) and to 5.8, 5.6 and 4.6 μmol/L after combination with TQ (20 μmol/L) to 24, 48 and 72 hours, respectively. The combination index (CI) and dose reduction index (DRI) values indicate a significant synergism in HCT-116 cells at different treatment time points. Thymoquinone significantly enhances the cellular uptake of IM in HCT116 cells in a time and concentration-dependent manner. A significant downregulation in ATP-binding cassette (ABC) subfamily B member 1 (ABCB1), ABC subfamily G member 2 (ABCG2) and human organic cation transporter 1 (hOCT1) genes was observed in the cells exposed to IM+TQ combination as compared to IM alone, which resulted in a substantial elevation in uptake/efflux ratio in combination group. In conclusion, TQ potentiates IM efficacy on HCT116 cells via uptake/efflux genes modulation.
Collapse
Affiliation(s)
- Nadia A Thabet
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Dalia El-Khouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Mohamed M Sayed-Ahmed
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mervat M Omran
- Pharmacology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Na YJ, Yu ES, Kim DS, Lee DH, Oh SC, Choi CW. Metformin enhances the cytotoxic effect of nilotinib and overcomes nilotinib resistance in chronic myeloid leukemia cells. Korean J Intern Med 2021; 36:S196-S206. [PMID: 32241082 PMCID: PMC8009173 DOI: 10.3904/kjim.2019.336] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND/AIMS Nilotinib is used for treating patients with imatinib-sensitive or -resistant chronic myeloid leukemia (CML); however, nilotinib-resistant cases have been observed in recent years. In addition, a considerable number of patients receiving nilotinib developed diabetes. Metformin is a front-line drug for the treatment of type 2 diabetes, and several studies have shown that diabetes patients treated with metformin have reduced incidence of cancer. This study aimed to define the effect of metformin on CML cells to determine whether metformin overcomes nilotinib resistance, and to identify novel targets for the treatment of nilotinib resistance. METHODS We observed the effects of metformin and nilotinib on K562 and KU812 human CML cell lines. Nilotinib-resistant CML cell lines were generated by exposing cells to gradually increasing doses of nilotinib. Then, we investigated the driving force that makes resistance to nilotinib and the effect of metformin on the driving force. RESULTS Sub-toxic doses of metformin enhanced nilotinib efficacy by reducing Bcl-xL expression, which induces apoptosis in CML cells. Next, we generated nilotinib-resistant K562 and KU812 cell lines that overexpressed the c-Jun N-terminal kinase (JNK) gene. JNK silencing by a JNK inhibitor restored sensitivity to nilotinib. Furthermore, metformin was effective in decreasing phosphorylated JNK levels, restoring nilotinib sensitivity. Combined treatment with nilotinib and metformin was more effective than combined treatment with nilotinib and a JNK inhibitor in terms of cell proliferation inhibition. CONCLUSION This study suggested that combination therapy with metformin and nilotinib may have clinical benefits of enhancing antileukemia efficacy and overcoming resistance to nilotinib.
Collapse
Affiliation(s)
- Yoo Jin Na
- Brain Korea 21 Plus Program for Biomedicine Science, Korea University College of Medicine, Seoul, Korea
| | - Eun Sang Yu
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Dae Sik Kim
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Dae-Hee Lee
- Brain Korea 21 Plus Program for Biomedicine Science, Korea University College of Medicine, Seoul, Korea
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Sang Cheul Oh
- Brain Korea 21 Plus Program for Biomedicine Science, Korea University College of Medicine, Seoul, Korea
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chul Won Choi
- Brain Korea 21 Plus Program for Biomedicine Science, Korea University College of Medicine, Seoul, Korea
- Division of Oncology and Hematology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
- Correspondence to Chul Won Choi, M.D. Division of Oncology and Hematology, Department of Internal Medicine, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul 08308, Korea Tel: +82-2-2626-3058 Fax: +82-2-862-6453 E-mail:
| |
Collapse
|
12
|
Hsu WC, Ramesh S, Shibu MA, Chen MC, Wang TF, Day CH, Chen RJ, Padma VV, Li CC, Tseng YC, Huang CY. Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153442. [PMID: 33412494 DOI: 10.1016/j.phymed.2020.153442] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/22/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Chemoresistance remains the main obstacle in hepatocellular carcinoma (HCC) therapy. Despite significant advances in HCC therapy, HCC still has a poor prognosis. Thus, there is an urgent need to identify a treatment target to reverse HCC chemotherapy resistance. Platycodon grandiflorus (PG) is a perennial herb that has been used as food and traditional Chinese medicine for thousands of years in Northeast Asia. Platycodin D (PD), a main active triterpenoid saponin found in the root of PG, has been reported to possess anticancer properties in several cancer cell lines, including HCC; however, the reversal effect of this molecule on HCC chemoresistance remains largely unknown. PURPOSE This study aimed to investigate the role and the mechanism of PD-mediated reversal of the histone deacetylase inhibitor (HDACi) resistance in HCC cells. METHODS Human HCC cells (HA22T) and HDACi-resistant (HDACi-R) cells were used. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Combination index was used to calculate the synergism potential. Expression of ERK1/2 (total/phospho), cofilin-1 (total/phospho) and apoptosis-related protein was determined using western blotting. Mitochondrial membrane potential was assessed using the JC-1 (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide) probe. Apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Mitochondrial reactive oxygen species generation was measured using the MitoSOX Red fluorescent probe. RESULTS We found that PD treatment inhibited cell viability both in HA22T HCC and HDACi-R cells. Inhibition of ERK1/2 by PD98059 could reverse drug resistance in HDACi-R cells treated with PD98059 and PD. Nevertheless, pre-treatment with U46619, an ERK1/2 activator, rescued PD-induced apoptosis by decreasing levels of apoptosis-related proteins in HCC cells. The combined treatment of PD with apicidin a powerful HDACi, dramatically enhanced the apoptotic effect in HDACi-R cells. CONCLUSION For the first time, we showed that PD reversed HDACi resistance in HCC by repressing ERK1/2-mediated cofilin-1 phosphorylation. Thus, PD can potentially be a treatment target to reverse HCC chemotherapy resistance in future therapeutic trials.
Collapse
Affiliation(s)
- Wei-Chung Hsu
- Department of Radiation Oncology, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan; Department of Occupational Therapy, Asia University, Taichung 41354, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Department of Microbiology, PRIST Deemed to be University, Thanjavur 614 904, Tamil Nadu, India
| | - Marthandam Asokan Shibu
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ming-Cheng Chen
- Department of Surgery, Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | | | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Chi-Cheng Li
- School of Medicine, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yu-Chen Tseng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taichung Armed Forces General Hospital, Taichung, Taiwan; Division of Gastroenterology and Hepatology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; Department of Biological Science and Technology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
13
|
Lu G, Wu Z, Shang J, Xie Z, Chen C, Zhang C. The effects of metformin on autophagy. Biomed Pharmacother 2021; 137:111286. [PMID: 33524789 DOI: 10.1016/j.biopha.2021.111286] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is the first-line option for treating newly diagnosed diabetic patients and also involved in other pharmacological actions, including antitumor effect, anti-aging effect, polycystic ovarian syndrome prevention, cardiovascular action, and neuroprotective effect, etc. However, the mechanisms of metformin actions were not fully illuminated. Recently, increasing researches showed that autophagy is a vital medium of metformin playing pharmacological actions. Nevertheless, results on the effects of metformin on autophagy were inconsistent. Apart from few clinical evidences, more data focused on kinds of no-clinical models. First, many studies showed that metformin could induce autophagy via a number of signaling pathways, including AMPK-related signaling pathways (e.g. AMPK/mTOR, AMPK/CEBPD, MiTF/TFE, AMPK/ULK1, and AMPK/miR-221), Redd1/mTOR, STAT, SIRT, Na+/H+ exchangers, MAPK/ERK, PK2/PKR/AKT/ GSK3β, and TRIB3. Secondly, some signaling pathways were involved in the process of metformin inhibiting autophagy, such as AMPK-related signaling pathways (AMPK/NF-κB and other undetermined AMPK-related signaling pathways), Hedgehog, miR-570-3p, miR-142-3p, and MiR-3127-5p. Thirdly, two types of signaling pathways including PI3K/AKT/mTOR and endoplasmic reticulum (ER) stress could bidirectionally impact the effectiveness of metformin on autophagy. Finally, multiple signal pathways were reviewed collectively in terms of affecting the effectiveness of metformin on autophagy. The pharmacological effects of metformin combining its actions on autophagy were also discussed. It would help better apply metformin to treat diseases in term of mediating autophagy.
Collapse
Affiliation(s)
- Guangli Lu
- School of Business, Henan University, Henan, Kaifeng, China
| | - Zhen Wu
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| | - Jia Shang
- School of Kaifeng Culture and Tourism, Henan, Kaifeng, China
| | - Zhenxing Xie
- School of Basic Medicine, Henan University, Henan, Kaifeng, Jinming Avenue, 475004, China.
| | - Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China.
| | - Chuning Zhang
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Henan, Kaifeng, China
| |
Collapse
|
14
|
Jiang S, Lu Q. A new contribution for an old drug: Prospect of metformin in colorectal oncotherapy. J Cancer Res Ther 2021; 17:1608-1617. [DOI: 10.4103/jcrt.jcrt_1824_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
15
|
Effect of metformin on irinotecan-induced cell cycle arrest in colorectal cancer cell lines HCT116 and SW480. Int J Health Sci (Qassim) 2021; 15:34-41. [PMID: 34548861 PMCID: PMC8434841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVES Metformin is widely used for the treatment of type 2 diabetes mellitus and found to have a crucial rule in the induction of apoptosis in several cancer types including pancreatic cell carcinoma, epithelial ovarian cancer, breast cancer, and renal cell carcinoma. In this study, we propose to explore the potential role of metformin as an adjuvant of irinotecan to target colorectal cancer (CRC) cell lines, exploring the effects underlying the anticancer properties of metformin on CRC cell lines. METHODS HCT116 and SW480 cell lines were treated with metformin, irinotecan and their combination. The effect of metformin on cell viability was evaluated using MTT assay. Flow cytometry technique was used to analyze apoptosis and cell cycle progression. While, detection of protein expression was analyzed by Western blot. RESULTS Metformin was found to inhibit growth in both HCT1116 and SW480 cell lines. On combination with irinotecan, it has been revealed that metformin sensitized CRC cells to irinotecan-induced cytotoxicity. Flow cytometry analysis showed that metformin did not induce apoptosis, but blocked cell cycle in G1 and S phases. This blockage was accompanied by decreased cyclin E and Cdk2 levels and increased p21 level. CONCLUSION Combination of metformin with irinotecan may be an effective treatment strategy for targeting colorectal cancer that are resistant to irinotecan monotherapy.
Collapse
|
16
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
17
|
Afifi NA, Ramadan A, Erian EY, Sedik AA, Amin MM, Hassan A, Saleh DO. Synergistic effect of aminoguanidine and l-carnosine against thioacetamide-induced hepatic encephalopathy in rats: behavioral, biochemical, and ultrastructural evidence. Can J Physiol Pharmacol 2020; 99:332-347. [PMID: 32721224 DOI: 10.1139/cjpp-2020-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. Hyperammonemia, inflammatory injury, and oxidative stress are the main predisposing factors for the direct and indirect changes in cerebral metabolism causing encephalopathy. The aim of this study was to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg, p.o.) and l-carnosine (CAR; 200 mg/kg, p.o.) on hepatic encephalopathy that was induced by thioacetamide (TAA; 100 mg/kg, i.p.) administered three times weekly for six weeks. Behavioral changes, biochemical parameters, histopathological analysis, and immunohistochemical and ultrastructural studies were conducted 24 h after the last treatment. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by reduced locomotor activity and decline in motor skill performance, as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes and serum and brain levels of ammonia. In addition, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines, and cleaved caspase-3 expression. Furthermore, they succeeded in activating nuclear erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase-1 (HO-1) activity and ameliorating markers of hepatic encephalopathy, including hepatic necrosis and brain astrocyte swelling. This study shows that combining AG with CAR exerted a new intervention for hepatic and brain damage in hepatic encephalopathy due to their complementary antioxidant, anti-inflammatory effects and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.
Collapse
Affiliation(s)
- Nehal A Afifi
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - A Ramadan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Emad Y Erian
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohamed M Amin
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
18
|
Jo MJ, Jin IS, Park CW, Hwang BY, Chung YB, Kim JS, Shin DH. Revolutionizing technologies of nanomicelles for combinatorial anticancer drug delivery. Arch Pharm Res 2020; 43:100-109. [PMID: 31989478 DOI: 10.1007/s12272-020-01215-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023]
Abstract
Insufficient efficacy of current single drug therapy of cancers have led to the advancement of combination drug-loaded formulations. Specifically, polymeric micelles have been focused on as efficient injectable vehicles for the delivery of several anticancer drugs simultaneously to cancer cells. These nano delivery systems have evolved with advancements in the area of nanotechnology. The current review presents a summary of the past events that have led to the procession of nanomicelles and novel nanotechnologies for combinatorial drug delivery. It also focuses on the advantages, disadvantages, and considerations for the design of nanotechnologies for combinatorial drug delivery systems. The opportunities and challenges of nanotechnologies in drug delivery to overcome current disadvantages are also discussed. Furthermore, we have added findings regarding the trends and perspectives regarding nanotechnologies for combinatorial anticancer drug delivery.
Collapse
Affiliation(s)
- Min Jeong Jo
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Ik Sup Jin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Chun-Woong Park
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Youn Bok Chung
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea
| | - Jin-Seok Kim
- Drug Information Research Institute (DIRI), College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul, 04310, Republic of Korea.
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea.
| |
Collapse
|
19
|
Ho CJ, Gorski SM. Molecular Mechanisms Underlying Autophagy-Mediated Treatment Resistance in Cancer. Cancers (Basel) 2019; 11:E1775. [PMID: 31717997 PMCID: PMC6896088 DOI: 10.3390/cancers11111775] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
Despite advances in diagnostic tools and therapeutic options, treatment resistance remains a challenge for many cancer patients. Recent studies have found evidence that autophagy, a cellular pathway that delivers cytoplasmic components to lysosomes for degradation and recycling, contributes to treatment resistance in different cancer types. A role for autophagy in resistance to chemotherapies and targeted therapies has been described based largely on associations with various signaling pathways, including MAPK and PI3K/AKT signaling. However, our current understanding of the molecular mechanisms underlying the role of autophagy in facilitating treatment resistance remains limited. Here we provide a comprehensive summary of the evidence linking autophagy to major signaling pathways in the context of treatment resistance and tumor progression, and then highlight recently emerged molecular mechanisms underlying autophagy and the p62/KEAP1/NRF2 and FOXO3A/PUMA axes in chemoresistance.
Collapse
Affiliation(s)
- Cally J. Ho
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
20
|
Yang IP, Miao ZF, Huang CW, Tsai HL, Yeh YS, Su WC, Chang TK, Chang SF, Wang JY. High blood sugar levels but not diabetes mellitus significantly enhance oxaliplatin chemoresistance in patients with stage III colorectal cancer receiving adjuvant FOLFOX6 chemotherapy. Ther Adv Med Oncol 2019; 11:1758835919866964. [PMID: 31467597 PMCID: PMC6704420 DOI: 10.1177/1758835919866964] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Background: The high prevalence of type 2 diabetes mellitus (DM) among patients with
colorectal cancer (CRC) is becoming a serious public health concern
worldwide. FOLFOX4 chemotherapy is one of the most widely used adjuvant
therapies in patients with stage III colon cancer after surgical resection.
However, chemotherapy resistance is associated with a poor prognosis. The
prognostic impact of high blood sugar levels on oxaliplatin resistance in
CRC patients is an unexplored topic. Methods: In total, 157 patients with stage III CRC were classified according to their
fasting blood sugar level (⩾126 or <126 mg/dl). Clinicopathological
features and oxaliplatin chemoresistance/survival outcome of the two groups
were compared. In vitro cell proliferation assay was
performed through d-(+)-glucose administration. Results: Multivariate analysis results revealed that high blood sugar level was a
significantly independent prognostic factor of disease-free survival and
overall survival (both p < 0.05), but not DM history.
After metformin administration, enhanced proliferation of CRC cells (HT-29,
HCT-116, SW480, and SW620) with d-(+)-glucose administration could
be reversed and oxaliplatin chemosensitivity considerably increased
(p < 0.05). Furthermore, phosphorylation of two
glycolysis-related target proteins, SMAD3 and MYC, notably increased under
high glucose concentration. Conclusions: Hyperglycemia can affect clinical outcomes in stage III CRC patients
receiving adjuvant chemotherapy, and the mechanism underlying oxaliplatin
resistance is possibly associated with increased phosphorylation of SMAD3
and MYC and upregulation of EHMT2 expression.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Nursing, Shu-Zen College of Medicine and Management, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Se-Fen Chang
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Taiwan
| |
Collapse
|
21
|
Ko G, Kim T, Ko E, Park D, Lee Y. Synergistic Enhancement of Paclitaxel-induced Inhibition of Cell Growth by Metformin in Melanoma Cells. Dev Reprod 2019; 23:119-128. [PMID: 31321352 PMCID: PMC6635613 DOI: 10.12717/dr.2019.23.2.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/27/2019] [Accepted: 06/08/2019] [Indexed: 11/25/2022]
Abstract
Melanoma is one of the most aggressive and treatment-resistant malignancies.
Antidiabetic drug metformin has been reported to inhibit cell proliferation and
metastasis in many cancers, including melanoma. Metformin suppresses the
mammalian target of rapamycin (mTOR) and our previous study showed that it also
inhibits the activity of extracellular signal-regulated kinase (ERK). Paclitaxel
is currently prescribed for treatment of melanoma. However, paclitaxel induced
the activation of ERK/mitogen-activated protein kinase (MAPK) pathway, a cell
signaling pathway implicated in cell survival and proliferation. Therefore, we
reasoned that combined treatment of paclitaxel with metformin could be more
effective in the suppression of cell proliferation than treatment of paclitaxel
alone. Here, we investigated the combinatory effect of paclitaxel and metformin
on the cell survival in SK-MEL-28 melanoma cell line. Our study shows that the
combination of paclitaxel and metformin has synergistic effect on cell survival
and suppresses the expression of proteins involved in cancer metastasis. These
findings suggest that the combination of paclitaxel and metformin can be a
possible therapeutic option for treatment of melanoma.
Collapse
Affiliation(s)
- Gihyun Ko
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Taehyung Kim
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Eunjeong Ko
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Deokbae Park
- Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Youngki Lee
- Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| |
Collapse
|
22
|
Inhibition of protein phosphatase 1 stimulates noncanonical ER stress eIF2α activation to enhance fisetin-induced chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Cancers (Basel) 2019; 11:cancers11070918. [PMID: 31261976 PMCID: PMC6678694 DOI: 10.3390/cancers11070918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common fatal type of malignant tumor that has highly metastatic and recurrent properties. Fisetin is a natural flavonoid found in various vegetables and fruits which exhibits anti-cancer and anti-inflammatory properties, as well as other effects. Thus, we hypothesized that fisetin can act as an adjuvant therapy in cancer or drug-resistant cancer cells, and further investigated the molecular mechanisms underlying the development of drug-resistance in HCC cells. We found that fisetin effectively inhibited the cell viability of not only parental cells but also histone deacetylase inhibitors-resistant (HDACis-R) cells and enhanced the chemosensitivity of HCC cells. Interestingly, fisetin did not induce cell apoptosis through the activation of the endoplasmic reticulum (ER) stress sensor of protein kinase R (PKR)-like endoplasmic reticulum kinase, but rather through the non-canonical pathway of the protein phosphatase 1 (PP1)-mediated suppression of eIF2α phosphorylation. Moreover, fisetin-induced cell apoptosis was reversed by treatment with PP1 activator or eIF2α siRNA in HCC cells. Based on these observations, we suggest that PP1-eIF2α pathways are significantly involved in the effect of fisetin on HCC apoptosis. Thus, fisetin may act as a novel anticancer drug and new chemotherapy adjuvant which can improve the efficacy of chemotherapeutic agents and diminish their side-effects.
Collapse
|
23
|
Zhang F, Chen H, Du J, Wang B, Yang L. Anticancer Activity of Metformin, an Antidiabetic Drug, Against Ovarian Cancer Cells Involves Inhibition of Cysteine-Rich 61 (Cyr61)/Akt/Mammalian Target of Rapamycin (mTOR) Signaling Pathway. Med Sci Monit 2018; 24:6093-6101. [PMID: 30171812 PMCID: PMC6130173 DOI: 10.12659/msm.909745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian cancer is considered one of the lethal cancers responsible for high mortality and morbidity across the world. The prognosis and the survival rate of ovarian cancer is far from decent. Cysteine-rich 61 (Cyr61) also known as CCN1, is a member of CCN-family of growth factors, reported to be significantly overexpressed in several malignancies which include, but are not limited to, ovarian cancer. Recent studies have revealed that women with type 2 diabetes mellitus have an elevated risk of ovarian cancer. Hence, administration of an antidiabetic drug with anticancer effects such as metformin may act as an effective therapeutic regime against ovarian cancer. Material/Methods Cell viability and apoptosis were examined by MTT and Annexin V/PI double staining respectively. Cell migration was determined by Boyden Chamber assay. Transient knockdown of Cyr61 in ovarian cancer cells was achieved by transecting the cells with siRNA for Cyr61using Lipofectamine 2000. Results Our results indicated that treatment of ovarian cancer cells with metformin caused significant downregulation of Cyr61 protein expression levels ultimately favoring apoptosis. Transient knockdown of Cyr61 resulted in the inhibition of cell proliferation and migration. This was also associated with the concomitant downregulation of pAkt and pmTOR confirming the role of Cyr61 as an upstream modulator of Akt signaling. Conversely the extracellular supplementation of recombinant Cyr61 attenuates the cytotoxic properties of metformin in ovarian cancer cells. Conclusions Taken together, we concluded that metformin exhibits anticancer effects and Cyr61 acts as a direct target for metformin in ovarian cancer cells.
Collapse
Affiliation(s)
- Fengli Zhang
- Infertility Center, Qilu Hospital, Shandong University, Jinan, Shandong, China (mainland).,Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Huixiao Chen
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Jing Du
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Bin Wang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| | - Lixiao Yang
- Department of Obstetrics and Gynecology, Liaocheng People's Hospital, Liaocheng, Shandong, China (mainland)
| |
Collapse
|
24
|
Abstract
Metformin is a lipophilic biguanide which inhibits hepatic gluconeogenesis and improves peripheral utilization of glucose. It is the first line pharmacotherapy for glucose control in patients with Type 2 diabetes due to its safety, efficacy and tolerability. Metformin exhibits pleotropic effects, which may have beneficial effects on a variety of tissues independent of glucose control. A potential anti-tumourigenic effect of metformin may be mediated by its role in activating AMP-kinase, which in turn inhibits mammalian target of rapamycin (mTOR). Non-AMPK dependent protective pathways may include reduction of insulin, insulin-like growth factor-1, leptin, inflammatory pathways and potentiation of adiponectin, all of which may have a role in tumourigenesis. A role in inhibiting cancer stem cells is also postulated. A number of large scale observational and cohort studies suggest metformin is associated with a reduced risk of a number of cancers, although the data is not conclusive. Recent randomised studies reporting use of metformin in treatment of cancer have revealed mixed results, and the results of much larger randomised trials of metformin as an adjuvant therapy in breast and colorectal cancers are awaited.
Collapse
Affiliation(s)
- Ritwika Mallik
- (a)International Training Fellow in Endocrinology and Diabetes, Department of Diabetes and Metabolism, Barts Health NHS Trust, London, UK
| | - Tahseen A Chowdhury
- Department of Diabetes and Metabolism, Barts and the London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
25
|
Kim T, Kim T, Choi S, Ko H, Park D, Lee Y. Combination of BEZ235 and Metformin Has Synergistic Effect on Cell Viability in Colorectal Cancer Cells. Dev Reprod 2018; 22:133-142. [PMID: 30023463 PMCID: PMC6048307 DOI: 10.12717/dr.2018.22.2.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022]
Abstract
Patients with type II diabetes mellitus are more susceptible to colorectal cancer (CRC) incidence than non-diabetics. The anti-diabetic drug metformin is most commonly prescribed for the treatment of this disease and has recently shown antitumor effect in preclinical studies. The aberrant mutational activation in the components of RAS/RAF/MEK/ERK and PI3K/AKT/mTOR signaling pathway is very frequently observed in CRC. We previously reported that metformin inhibits the phosphorylation of ERK and BEZ235, a dual inhibitor of PI3K and mTOR, has anti-tumor activity against HCT15 CRC cells harboring mutations of KRAS and PIK3CA. Therefore, we hypothesized that simultaneous inhibition of two pathways by combining metformin with BEZ235 could be more effective in the suppression of proliferation than single agent treatment in HCT15 CRC cells. Here, we investigated the combinatory effect of metformin and BEZ235 on the cell survival in HCT15 CRC cells. Our study shows that both of the two signaling pathways can be blocked by this combinational strategy: metformin suppressed both pathways by inhibiting the phosphorylation of ERK, 4E-BP1 and S6, and BEZ235 suppressed PI3K/AKT/ mTOR pathway by reducing the phosphorylation of 4E-BP1 and S6. This combination treatment synergistically reduced cell viability. The combination index (CI) values ranged from 0.44 to 0.88, indicating synergism for the combination. These results offer a preclinical rationale for the potential therapeutic option for the treatment of CRC.
Collapse
Affiliation(s)
- Taewan Kim
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Taehyung Kim
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Soonyoung Choi
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Hyeran Ko
- Dept. of Medicine, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Deokbae Park
- Dept. of Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| | - Youngki Lee
- Dept. of Histology, Jeju National University School of Medicine, Jeju 63243, Korea
| |
Collapse
|
26
|
Patel MM, Patel BM. Repurposing of sodium valproate in colon cancer associated with diabetes mellitus: Role of HDAC inhibition. Eur J Pharm Sci 2018; 121:188-199. [PMID: 29852291 DOI: 10.1016/j.ejps.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Diabetic patients are at greater risk for colon cancer. Histone deacetylases (HDACs) serve as common target for both. The key objective of the study was to evaluate the effect of sodium valproate in type 2 diabetes mellitus associated colon cancer. EXPERIMENTAL APPROACH High fat diet and streptozotocin were used to induce type 2 diabetes. Following this, after diabetes confirmation, colon cancer was induced using 1,2 dimethylhydrazine (25 mg/kg, s.c.) once weekly from 7th week to 20th weeks. Sodium valproate (200 mg/kg) treatment was given from 20th to 24th week. At the end of 24 weeks, several enzymatic and biochemical parameters, were estimated. MTT, clonogenic and scratch wound healing assay were carried out in HCT-15 cell line. KEY RESULTS Hyperglycemia, hyperinsulinemia, increase in cytokines (TNF-α and IL-1β) and carcinoembryonic antigen and presence of proliferating cells was seen in disease control animals which was prevented by sodium valproate treatment. Overexpression of relative HDAC2 mRNA levels was found in diseased control animals, which was reduced by sodium valproate treatment. IC50 of sodium valproate was found to be 3.40 mM and 3.73 mM at 48 h and 72 h respectively on HCT-15 cell line. Sodium valproate also dose dependently prevented colony formation and cell migration. CONCLUSION AND IMPLICATIONS Sodium valproate can be considered for repurposing in colon cancer associated with diabetes mellitus.
Collapse
Affiliation(s)
- Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.
| | - Bhoomika M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India.
| |
Collapse
|
27
|
Huang WS, Lin CT, Chen CN, Chang SF, Chang HI, Lee KC. Metformin increases the cytotoxicity of oxaliplatin in human DLD-1 colorectal cancer cells through down-regulating HMGB1 expression. J Cell Biochem 2018; 119:6943-6952. [PMID: 29737584 DOI: 10.1002/jcb.26898] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cause of cancer death worldwide. Chemotherapy has been the major strategy for treating patients with advanced CRC. Oxaliplatin (OXA) is used as both an adjuvant and neoadjuvant anticancer agent available to treat advanced CRC. High-mobility group box 1 protein (HMGB1) is a critical regulator of cell death and survival. HMGB1 overexpression has been shown to be resistant to cytotoxic agents. In addition, Metformin, a widely used drug for diabetes, has emerged as a potential anticancer agent. In this study, we examined whether HMGB1 plays a role in the OXA- and/or metformin-induced cytotoxic effect on CRC cells. The results showed that treatment with OXA increased HMGB1 expression in the ERK1/2- and Akt-dependent manners in DLD-1 cells. HMGB1 gene knockdown enhanced the cytotoxicity and cell growth inhibition of OXA. Moreover, OXA-increased HMGB1 expression was by inducing NF-κB-DNA-binding activity to in DLD-1 cells. Compared to a single agent, OXA combined with metformin administration resulted in cytotoxicity and cell growth inhibition synergistically, accompanied with reduced HMGB1 level. These findings may have implications for the rational design of future drug regimens incorporating OXA and metformin for the treatment of CRC.
Collapse
Affiliation(s)
- Wen-Shih Huang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin, Taiwan.,Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi, Taiwan
| | - Hsin-I Chang
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Ko-Chao Lee
- Department of Colorectal Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Kaohsiung, Taiwan
| |
Collapse
|