1
|
Temviriyanukul P, Chansawhang A, Karinchai J, Phochantachinda S, Buranasinsup S, Inthachat W, Pitchakarn P, Chantong B. Kaempferia parviflora Extracts Protect Neural Stem Cells from Amyloid Peptide-Mediated Inflammation in Co-Culture Model with Microglia. Nutrients 2023; 15:nu15051098. [PMID: 36904098 PMCID: PMC10004790 DOI: 10.3390/nu15051098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The existence of neuroinflammation and oxidative stress surrounding amyloid beta (Aβ) plaques, a hallmark of Alzheimer's disease (AD), has been demonstrated and may result in the activation of neuronal death and inhibition of neurogenesis. Therefore, dysregulation of neuroinflammation and oxidative stress is one possible therapeutic target for AD. Kaempferia parviflora Wall. ex Baker (KP), a member of the Zingiberaceae family, possesses health-promoting benefits including anti-oxidative stress and anti-inflammation in vitro and in vivo with a high level of safety; however, the role of KP in suppressing Aβ-mediated neuroinflammation and neuronal differentiation has not yet been investigated. The neuroprotective effects of KP extract against Aβ42 have been examined in both monoculture and co-culture systems of mouse neuroectodermal (NE-4C) stem cells and BV-2 microglia cells. Our results showed that fractions of KP extract containing 5,7-dimethoxyflavone, 5,7,4'-trimethoxyflavone, and 3,5,7,3',4'-pentamethoxyflavone protected neural stem cells (both undifferentiated and differentiated) and microglia activation from Aβ42-induced neuroinflammation and oxidative stress in both monoculture and co-culture system of microglia and neuronal stem cells. Interestingly, KP extracts also prevented Aβ42-suppressed neurogenesis, possibly due to the contained methoxyflavone derivatives. Our data indicated the promising role of KP in treating AD through the suppression of neuroinflammation and oxidative stress induced by Aβ peptides.
Collapse
Affiliation(s)
- Piya Temviriyanukul
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Jirarat Karinchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sataporn Phochantachinda
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Shutipen Buranasinsup
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Woorawee Inthachat
- Food and Nutrition Academic and Research Cluster, Institute of Nutrition, Mahidol University, Salaya, Phuttamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.P.); (B.C.)
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
- Correspondence: (P.P.); (B.C.)
| |
Collapse
|
2
|
Jameie SB, Pirasteh A, Naseri A, Jameie MS, Farhadi M, Babaee JF, Elyasi L. β-Amyloid Formation, Memory, and Learning Decline Following Long-term Ovariectomy and Its Inhibition by Systemic Administration of Apigenin and β-Estradiol. Basic Clin Neurosci 2021; 12:383-394. [PMID: 34917297 PMCID: PMC8666925 DOI: 10.32598/bcn.2021.2634.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 08/09/2020] [Indexed: 11/22/2022] Open
Abstract
Introduction: The increasing cases of Alzheimer Disease (AD) has caused numerous problems. The risk of developing AD increases in menopausal women, too. Apigenin and β-estradiol are effective antioxidant and neuroprotective agents. We conducted the present study to explore their combined effects on β-amyloid plaque formation, memory, and learning in ovariectomized rats. Methods: Forty-two Wistar rats were randomly assigned into 6 groups: 1) ovariectomized (OVX), 2) OVX + apigenin, 3) OVX + β-estradiol, 4) OVX + apigenin + β-estradiol, 5 &6) vehicle shams for E2 and API, and 7) surgical sham. Treatment was done with apigenin and β-estradiol. Then, we studied the formation of β-amyloid plaques, neuronal density in the hippocampus area, apoptosis, memory, and learning. Results: Findings showed the significant formation of β-amyloid plaques in the hippocampus of OVX animals and their memory impairment. Apigenin and β-estradiol significantly reduced the number of β-amyloid plaques, as well as the symptoms of memory impairment and learning, and decreased the expression of caspase-3 in treated animals. Conclusion: Accordingly, β-estradiol and apigenin could have more potent therapeutic effects on AD.
Collapse
Affiliation(s)
| | - Abbas Pirasteh
- Department of Psychology, Faculty of Humanities, Firoozabad Branch, Islamic Azad University, Fars, Iran
| | - Ali Naseri
- Department of Psychology, Faculty of Humanities, Firoozabad Branch, Islamic Azad University, Fars, Iran
| | - Melika Sadat Jameie
- Department of Anatomy, Faculty of Medicine, Shahid Behshti University of Medical Sciences, Tehran, Iran
| | - Mona Farhadi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Javad Fahanik Babaee
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Elyasi
- Department of Anatomy, Neuroscience Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Kwon HS, Ha J, Kim JY, Park HH, Lee EH, Choi H, Lee KY, Lee YJ, Koh SH. Telmisartan Inhibits the NLRP3 Inflammasome by Activating the PI3K Pathway in Neural Stem Cells Injured by Oxygen-Glucose Deprivation. Mol Neurobiol 2021; 58:1806-1818. [PMID: 33404978 DOI: 10.1007/s12035-020-02253-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
Angiotensin II receptor blockers (ARBs) have been shown to exert neuroprotective effects by suppressing inflammatory and apoptotic responses. In the present study, the effects of the ARB telmisartan on the NLRP3 inflammasome induced by oxygen-glucose deprivation (OGD) in neural stem cells (NSCs) were investigated, as well as their possible association with the activation of the PI3K pathway. Cultured NSCs were treated with different concentrations of telmisartan and subjected to various durations of OGD. Cell counting, lactate dehydrogenase, bromodeoxyuridine, and colony-forming unit assays were performed to measure cell viability and proliferation. In addition, the activity of intracellular signaling pathways associated with the PI3K pathway and NLRP3 inflammasome was evaluated. Telmisartan alone did not affect NSCs up to a concentration of 10 μM under normal conditions but showed toxicity at a concentration of 100 μM. Moreover, OGD reduced the viability of NSCs in a time-dependent manner. Nevertheless, treatment with telmisartan increased the viability and proliferation of OGD-injured NSCs. Furthermore, telmisartan promoted the expression of survival-related proteins and mRNA while inhibiting the expression of death-related proteins induced by OGD. In particular, telmisartan attenuated OGD-dependent expression of the NLRP3 inflammasome and its related signaling proteins. These beneficial effects of telmisartan were blocked by a PI3K inhibitor. Together, these results indicate that telmisartan attenuated the activation of the NLRP3 inflammasome by triggering the PI3K pathway, thereby contributing to neuroprotection.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Jungsoon Ha
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- GemVax & Kael Co., Ltd, Seongnam-si, Republic of Korea
| | - Ji Young Kim
- Department of Nuclear Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, 153, Gyeongchun-ro, Guri, 11923, South Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Glia-Like Cells from Human Mesenchymal Stem Cells Protect Neural Stem Cells in an In Vitro Model of Alzheimer's Disease by Reducing NLRP-3 Inflammasome. Dement Neurocogn Disord 2020; 20:1-8. [PMID: 33552214 PMCID: PMC7847801 DOI: 10.12779/dnd.2021.20.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/22/2023] Open
Abstract
Background and Purpose Neural stem cells (NSCs) have the ability to regenerate, proliferate, and differentiate, enabling them to play important roles in the recovery of the damaged nervous system. However, in neurodegenerative diseases such as Alzheimer's disease (AD), the NSCs are damaged as well. Glia-like cells from human mesenchymal stem cells (ghMSCs) are functionally enhanced adult stem cells. In the present study, we investigated whether ghMSCs could protect NSCs from amyloid beta (Aβ)-mediated toxicity. Methods Rat NSCs were obtained from E13–14 fetal rat cortices. NSCs were seeded in pre-coated plates, and the next day, cells were simultaneously treated with 20 μM Aβ and 0.4 μm pore insert well-seeded ghMSCs. After 48 hours of co-treatment, cell viability and proliferation were evaluated. After 2 hours of co-treatment, western blotting was performed to measure inflammasome-related factors, such as NOD-like receptor family pyrin domain containing 3, caspase-1, and interleukin-1β. Results The results showed that ghMSCs increased viability and proliferation and reduced the toxicity of NSCs injured by Aβ by reducing the NRLP3 inflammasome activation of NSCs induced by Aβ. Conclusions In this study, we confirmed that ghMSCs could protect NSCs in an in vitro model of AD through the regulation of inflammatory response.
Collapse
|
5
|
Hwang M, Han MH, Park HH, Choi H, Lee KY, Lee YJ, Kim JM, Cheong JH, Ryu JI, Min KW, Oh YH, Ko Y, Koh SH. LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma. Exp Neurobiol 2019; 28:628-641. [PMID: 31698554 PMCID: PMC6844835 DOI: 10.5607/en.2019.28.5.628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream signaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.
Collapse
Affiliation(s)
- Mina Hwang
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Young-Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Yong Ko
- Department of Neurosurgery, Hanyang University Medical Center, Seoul 04763, Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea.,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Korea
| |
Collapse
|
6
|
Atorvastatin Rejuvenates Neural Stem Cells Injured by Oxygen–Glucose Deprivation and Induces Neuronal Differentiation Through Activating the PI3K/Akt and ERK Pathways. Mol Neurobiol 2018; 56:2964-2977. [DOI: 10.1007/s12035-018-1267-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 07/18/2018] [Indexed: 01/01/2023]
|