1
|
Wingate K, Dalsey E, Scott DP. A review of occupational safety and health research for American Indians and Alaska Natives. JOURNAL OF SAFETY RESEARCH 2023; 84:204-211. [PMID: 36868648 PMCID: PMC10044489 DOI: 10.1016/j.jsr.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/12/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION To better understand what is known about issues affecting American Indian and Alaska Native (AI/AN) workers, authors conducted a literature review of publications specific to AI/AN and occupational safety and health. METHODS Search criteria included: (a) American Indian tribes and Alaska Native villages in the United States; (b) First Nations and aboriginals in Canada; and (c) occupational safety and health. RESULTS Results of two identical searches in 2017 and 2019 identified 119 articles and 26 articles respectively, with references to AI/AN people and occupation. Of the 145 total articles, only 11 articles met the search criteria for addressing occupational safety and health research among AI/AN workers. Information from each article was abstracted and categorized according to National Occupational Research Agenda (NORA) sector, resulting in: four articles related to agriculture, forestry, and fishing; three related to mining; one related to manufacturing; and one related to services. Two articles reported on AI/AN people and occupational well-being in general. CONCLUSIONS The review was limited by the small number and age of relevant articles, reflecting the likelihood that findings could be out of date. General themes across the reviewed articles point to the need for increased overall awareness and education regarding injury prevention and risks associated with occupational injuries and fatalities among AI/AN workers. Similarly, increased use of personal protective equipment (PPE) is recommended for the agriculture, forestry, and fishing industries, as well as for workers exposed to metals dust. PRACTICAL APPLICATIONS The lack of research in most NORA sectors indicates the need for heightened research efforts directed toward AI/AN workers.
Collapse
Affiliation(s)
- Kaitlin Wingate
- National Institute for Occupational Safety and Health, Western States Division, United States
| | - Elizabeth Dalsey
- National Institute for Occupational Safety and Health, Western States Division, United States.
| | - Deborah Poling Scott
- National Institute for Occupational Safety and Health, Western States Division, United States
| |
Collapse
|
2
|
Coombs S, Sleeth DK, Jones RM. Environmental and occupational health on the Navajo Nation: a scoping review. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:181-187. [PMID: 34968017 PMCID: PMC9150895 DOI: 10.1515/reveh-2021-0118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
A scoping review was performed to answer: what environmental health concerns have been associated with adverse health outcomes in the Navajo Nation? The review focused on occupational and ambient environmental exposures associated with human industrial activities. The search strategy was implemented in PubMed, and two investigators screened the retrieved literature. Thirteen studies were included for review. Data were extracted using the matrix method. Six studies described associations between work in uranium mining and cancer. Six studies focused on environmental exposures to uranium mine waste and other metals, with outcomes that included biological markers, kidney disease, diabetes and hypertension, and adverse birth outcomes. One study explored occupational exposure to Sin Nombre Virus and infection. Most research has focused on the health effects of uranium, where occupational exposures occurred among miners and environmental exposures are a legacy of uranium mining and milling. Gaps exist with respect to health outcomes associated with current occupations and the psychosocial impact of environmental hazards. Other environmental exposures and hazards are known to exist on the Navajo Nation, which may warrant epidemiologic research.
Collapse
Affiliation(s)
- Sharly Coombs
- Department of Family and Preventive Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Darrah K. Sleeth
- Department of Family and Preventive Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Rachael M. Jones
- Department of Family and Preventive Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Liu Z, Lin Y, Hoover J, Beene D, Charley PH, Singer N. Individual level spatial-temporal modelling of exposure potential of livestock in the Cove Wash watershed, Arizona. ANNALS OF GIS 2022; 29:87-107. [PMID: 37090684 PMCID: PMC10117392 DOI: 10.1080/19475683.2022.2075935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/02/2022] [Indexed: 05/03/2023]
Abstract
Personal exposure studies suffer from uncertainty issues, largely stemming from individual behavior uncertainties. Built on spatial-temporal exposure analysis and methods, this study proposed a novel approach to spatial-temporal modeling that incorporated behavior classifications taking into account uncertainties, to estimate individual livestock exposure potential. The new approach was applied in a community-based research project with a Tribal community in the southwest United States. The community project examined the geospatial and temporal grazing patterns of domesticated livestock in a watershed containing 52 abandoned uranium mines (AUMs). Thus, the study aimed to 1) classify Global Positioning System (GPS) data from livestock into three behavior subgroups - grazing, traveling or resting; 2) calculate the daily cumulative exposure potential for livestock; 3) assess the performance of the computational method with and without behavior classifications. Using Lotek Litetrack GPS collars, we collected data at a 20-minute-interval for 2 flocks of sheep and goats during the spring and summer of 2019. Analysis and modeling of GPS data demonstrated no significant difference in individual cumulative exposure potential within each flock when animal behaviors with probability/uncertainties were considered. However, when daily cumulative exposure potential was calculated without consideration of animal behavior or probability/uncertainties, significant differences among animals within a herd were observed, which does not match animal grazing behaviors reported by livestock owners. These results suggest that the proposed method of including behavior subgroups with probability/uncertainties more closely resembled the observed grazing behaviors reported by livestock owners. Results from the research may be used for future intervention and policy-making on remediation efforts in communities where grazing livestock may encounter environmental contaminants. This research also demonstrates a novel robust geographic information system (GIS)-based framework to estimate cumulative exposure potential to environmental contaminants and provides critical information to address community questions on livestock exposure to AUMs.
Collapse
Affiliation(s)
- Zhuoming Liu
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Yan Lin
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Joseph Hoover
- Department of Social Sciences and Cultural Studies, Montana State University Billings, Bozeman, MT, USA
| | - Daniel Beene
- Department of Geography and Environmental Studies, University of New Mexico, Albuquerque, NM, USA
- Community Environmental Health Program, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Perry H. Charley
- Dine Environmental Consultant, Beclabito Chapter, Navajo Nation, NM, USA
| | | |
Collapse
|
4
|
Ou T, Wu Y, Han W, Kong L, Song G, Chen D, Su M. Synthesis of thickness-controllable polydopamine modified halloysite nanotubes (HNTs@PDA) for uranium (VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127208. [PMID: 34592591 DOI: 10.1016/j.jhazmat.2021.127208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Halloysite nanotubes (HNTs) are considered structurally promising adsorption materials, but their application is limited due to their poor native adsorption properties. Improving the adsorption capacity of HNTs for radioactive U(VI) is of great significance. By controlling the mass ratio of HNTs and dopamine (DA), composite adsorbents (HNTs@PDA) with different polydopamine (PDA) layer thicknesses were synthesized. Characterization of HNTs@PDA demonstrated that the original structure of the HNTs was maintained. Adsorption experiments verified that the adsorption capacity of HNTs@PDA for U(VI) was significantly improved. The effects of solution pH, temperature, and coexisting ions on the adsorption process were investigated. The removal efficiency was observed to be 75% after five repeated uses. The adsorption mechanism of U(VI) by HNTs@PDA can be explained by considering electrostatic interactions and the complexation of C-O, -NH- and C-N/CN in the PDA layer. This study provides some basic information for the application of HNTs for U(VI) removal.
Collapse
Affiliation(s)
- Tao Ou
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Weixing Han
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lingjun Kong
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Zychowski KE, Kodali V, Harmon M, Tyler CR, Sanchez B, Ordonez Suarez Y, Herbert G, Wheeler A, Avasarala S, Cerrato JM, Kunda NK, Muttil P, Shuey C, Brearley A, Ali AM, Lin Y, Shoeb M, Erdely A, Campen MJ. Respirable Uranyl-Vanadate-Containing Particulate Matter Derived From a Legacy Uranium Mine Site Exhibits Potentiated Cardiopulmonary Toxicity. Toxicol Sci 2019; 164:101-114. [PMID: 29660078 DOI: 10.1093/toxsci/kfy064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared with background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤ 10 μm) fraction. Mice were dosed with either PM sample, uranyl acetate, or vanadyl sulfate via aspiration (100 µg), with assessments of pulmonary and vascular toxicity 24 h later. Particulate matter samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared with background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated interleukin [IL]-1β, tumor necrosis factor-α, and keratinocyte chemoattractant/human growth-regulated oncogene) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, and IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.
Collapse
Affiliation(s)
- Katherine E Zychowski
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Vamsi Kodali
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Molly Harmon
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Christina R Tyler
- Biosciences Division, Los Alamos National Laboratories, Los Alamos, New Mexico 87545
| | - Bethany Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Yoselin Ordonez Suarez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Abigail Wheeler
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Sumant Avasarala
- Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - José M Cerrato
- Department of Civil Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, New Mexico 87196
| | | | | | - Yan Lin
- Department of Geography, University of New Mexico, Albuquerque, New Mexico 87131
| | - Mohammad Shoeb
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Aaron Erdely
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
6
|
Ferri GM, Intranuovo G, Cavone D, Corrado V, Birtolo F, Tricase P, Fuso R, Vilardi V, Sumerano M, L'abbate N, Vimercati L. Estimates of the Lung Cancer Cases Attributable to Radon in Municipalities of Two Apulia Provinces (Italy) and Assessment of Main Exposure Determinants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061294. [PMID: 29925825 PMCID: PMC6025095 DOI: 10.3390/ijerph15061294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022]
Abstract
Indoor radon exposure is responsible for increased incidence of lung cancer in communities. Building construction characteristics, materials, and environmental determinants are associated with increased radon concentration at specific sites. In this study, routine data related to radon measurements available from the Apulia (Italy) Regional Environmental Protection Agency (ARPA) were combined with building and ground characteristics data. An algorithm was created based on the experience of miners and it was able to produce estimates of lung cancer cases attributable to radon in different municipalities with the combined data. In the province of Lecce, the sites with a higher risk of lung cancer are Campi Salentina and Minervino, with 1.18 WLM (working level months) and 1.38 WLM, respectively, corresponding to lung cancer incidence rates of 3.34 and 3.89 per 10 × 103 inhabitants. The sites in the province of Bari with higher risks of lung cancer are Gravina di Puglia and Locorotondo, measuring 1.89 WLM and 1.22 WLM, respectively, which correspond to an incidence rate of lung cancer of 5.36 and 3.44 per 10 × 103 inhabitants. The main determinants of radon exposure are whether the buildings were built between 1999 and 2001, were one-room buildings with porous masonry, and were built on soil consisting of pelvis, clayey sand, gravel and conglomerates, calcarenites, and permeable lithotypes.
Collapse
Affiliation(s)
- Giovanni Maria Ferri
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Graziana Intranuovo
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Domenica Cavone
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Vincenzo Corrado
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Francesco Birtolo
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Paolo Tricase
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Raffaele Fuso
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Valeria Vilardi
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Marilena Sumerano
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Nicola L'abbate
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| | - Luigi Vimercati
- Unit of Occupational Medicine, Regional University Hospital "Policlinico-Giovanni XXIII", Section "B. Ramazzini", Interdisciplinary Department of Medicine, University of Bari, Piazza G, Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
7
|
Wang X, Farris III AB, Wang P, Zhang X, Wang H, Wang Y. Relative Effectiveness at 1 Gy after Acute and Fractionated Exposures of Heavy Ions with Different Linear Energy Transfer for Lung Tumorigenesis. Radiat Res 2015; 183:233-9. [DOI: 10.1667/rr13884.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Szőke I, Farkas A, Balásházy I, Hofmann W, Madas BG, Szőke R. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects. Int J Radiat Biol 2012; 88:477-92. [PMID: 22420832 DOI: 10.3109/09553002.2012.676229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE The primary objective of this paper was to investigate the distribution of radiation doses and the related biological responses in cells of a central airway bifurcation of the human lung of a hypothetical worker of the New Mexico uranium mines during approximately 12 hours of exposure to short-lived radon progenies. MATERIALS AND METHODS State-of-the-art computational modelling techniques were applied to simulate the relevant biophysical and biological processes in a central human airway bifurcation. RESULTS The non-uniform deposition pattern of inhaled radon daughters caused a non-uniform distribution of energy deposition among cells, and of related cell inactivation and cell transformation probabilities. When damage propagation via bystander signalling was assessed, it produced more cell killing and cell transformation events than did direct effects. If bystander signalling was considered, variations of the average probabilities of cell killing and cell transformation were supra-linear over time. CONCLUSIONS Our results are very sensitive to the radiobiological parameters, derived from in vitro experiments (e.g., range of bystander signalling), applied in this work and suggest that these parameters may not be directly applicable to realistic three-dimensional (3D) epithelium models.
Collapse
Affiliation(s)
- István Szőke
- Centre for Energy Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
Sun Z, Hong J, Liu Z, Jin X, Gu C. Coal Dust Contiguity-induced Changes in the Concentration of TNF-α and NF-κ B p65 on the Ocular Surface. Ocul Immunol Inflamm 2009; 17:76-82. [DOI: 10.1080/09273940802650380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Sun Z, Hong J, Yang D, Liu G. Effects of Coal Dust Contiguity on Xerophthalmia Development. Cutan Ocul Toxicol 2008; 26:257-63. [PMID: 17687690 DOI: 10.1080/15569520701212316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSES To study the occurrence of ocular surface diseases on coal miners working under wells and to investigate the relation between xerophthalmia occurrence and coal dust contiguity. METHODS To observe the influence of coal dust to ocular surface by using Schirmer to detect lacrimal gland secreting function, and breakup time of tear film (BUT) to evaluate the stability of lacrimal film and the quantity of lysozyme in lacrimal fluid. RESULTS These values were lower for underground coal miners than other workers not contacting coal dust, and showed negative correlation to period of their services. CONCLUSIONS Conditions in coal miners were worse than that of other workers. Coal dust exposure plays an important role in the development of dry eye.
Collapse
Affiliation(s)
- Zhaoyi Sun
- Department of Ophthalmology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | | | | | | |
Collapse
|
11
|
Abstract
We explore the experience of Navajo communities living under the shadow of nuclear age fallout who were subjects of five decades of research. In this historical analysis of public health (epidemiological) research conducted in the Navajo lands since the inception of uranium mining from the 1950s untill the end of the 20th century, we analyze the successes and failures in the research initiatives conducted on Navajo lands, the ethical breaches, and the harms and benefits that this research has brought about to the community. We discuss how scientific and moral uncertainty, lack of full stakeholder participation and community wide outreach and education can impact ethical decisions made in research.
Collapse
Affiliation(s)
- Bindu Panikkar
- Department of Civil and Environmental Engineering, Tufts University, Massachusetts, USA
| | | |
Collapse
|
12
|
Pourahmad J, Ghashang M, Ettehadi HA, Ghalandari R. A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity. ENVIRONMENTAL TOXICOLOGY 2006; 21:349-54. [PMID: 16841314 DOI: 10.1002/tox.20196] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Addition of U(VI) (uranyl acetate) to isolated rat hepatocytes results in rapid glutathione oxidation, reactive oxygen species (ROS) formation, lipid peroxidation, decreased mitochondrial membrane potential, and lysosomal membrane rupture before hepatocyte lysis occurred. Cytotoxicity was prevented by ROS scavengers, antioxidants, and glutamine (ATP generator). Hepatocyte dichlorofluorescein oxidation was inhibited by mannitol (a hydroxyl radical scavenger) or butylated hydroxyanisole and butylated hydroxytoluene (antioxidants). Glutathione depleted hepatocytes were resistant to U(VI) toxicity and much less dichlorofluorescein oxidation occurred. Reduction of U(VI) by glutathione or cysteine in vitro was also accompanied by oxygen uptake and was inhibited by Ca(II) (a U(IV) or U(VI) reduction inhibitor). U(VI)-induced cytotoxicity and ROS formation was also inhibited by Ca(II), which suggests that U(IV) and U(IV) GSH mediate ROS formation in isolated hepatocytes. The U(VI) reductive mechanism required for toxicity has not been investigated. Cytotoxicity was also prevented by cytochrome P450 inhibitors, particularly CYP 2E1 inhibitors, but not inhibitors of DT diaphorase or glutathione reductase. This suggests that P450 reductase and reduced cytochrome P450 contributes to U(VI) reduction to U(IV). In conclusion, U(VI) cytotoxicity is associated with mitochondrial/lysosomal toxicity by the reduced biological metabolites and ROS.
Collapse
Affiliation(s)
- Jalal Pourahmad
- Faculty of Pharmacy and Pharmaceutical Research Center, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|
13
|
Stearns DM, Yazzie M, Bradley AS, Coryell VH, Shelley JT, Ashby A, Asplund CS, Lantz RC. Uranyl acetate induces hprt mutations and uranium-DNA adducts in Chinese hamster ovary EM9 cells. Mutagenesis 2005; 20:417-23. [PMID: 16195314 DOI: 10.1093/mutage/gei056] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Questions about possible adverse health effects from exposures to uranium have arisen as a result of uranium mining, residual mine tailings and use of depleted uranium in the military. The purpose of the current study was to measure the toxicity of depleted uranium as uranyl acetate (UA) in mammalian cells. The activity of UA in the parental CHO AA8 line was compared with that in the XRCC1-deficient CHO EM9 line. Cytotoxicity was measured by clonogenic survival. A dose of 200 microM UA over 24 h produced 3.1-fold greater cell death in the CHO EM9 than the CHO AA8 line, and a dose of 300 microM was 1.7-fold more cytotoxic. Mutagenicity at the hypoxanthine (guanine) phosphoribosyltransferase (hprt) locus was measured by selection with 6-thioguanine. A dose of 200 microM UA produced approximately 5-fold higher averaged induced mutant frequency in the CHO EM9 line relative to the CHO AA8 line. The generation of DNA strand breaks was measured by the alkaline comet assay at 40 min and 24 h exposures. DNA strand breaks were detected in both lines; however a dose response may have been masked by U-DNA adducts or crosslinks. Uranium-DNA adducts were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 24 and 48 h exposures. A maximum adduct level of 8 U atoms/10(3) DNA-P for the 300 microM dose was found in the EM9 line after 48 h. This is the first report of the formation of uranium-DNA adducts and mutations in mammalian cells after direct exposure to a depleted uranium compound. Data suggest that uranium could be chemically genotoxic and mutagenic through the formation of strand breaks and covalent U-DNA adducts. Thus the health risks for uranium exposure could go beyond those for radiation exposure.
Collapse
Affiliation(s)
- Diane M Stearns
- Department of Chemistry and Biochemistry, Northern Arizona University, PO Box 5698, Flagstaff, AZ 86011-5698, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Brugge D, de Lemos JL, Oldmixon B. Exposure pathways and health effects associated with chemical and radiological toxicity of natural uranium: a review. REVIEWS ON ENVIRONMENTAL HEALTH 2005; 20:177-93. [PMID: 16342416 DOI: 10.1515/reveh.2005.20.3.177] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Natural uranium exposure derives from the mining, milling, and processing of uranium ore, as well as from ingestion of groundwater that is naturally contaminated with uranium. Ingestion and inhalation are the primary routes of entry into the body. Absorption of uranium from the lungs or digestive track is typically low but can vary depending on compound specific solubility. From the blood, two-thirds of the uranium is excreted in urine over the first 24 hours and up to 80% to 90% of uranium deposited in the bone leaves the body within 1.5 years. The primary health outcomes of concern documented with respect to uranium are renal, developmental, reproductive, diminished bone growth, and DNA damage. The reported health effects derive from experimental animal studies and human epidemiology. The Lowest Observed Adverse Effect Level (LOAEL) derived from animal studies is 50 microg/m3 for inhalation and 60 ug/kg body weight/day for ingestion. The current respiratory standard of the Occupational Safety and Health Administration (OSHA), 50 microg/m3, affords no margin of safety. Considering the safety factors for species and individual variation, the ingestion LOAEL corresponds to the daily consumption set by the World Health Organization Drinking Water Standard at 2 microg/L. Based on economic considerations, the United States Environmental Protection Agency maximum contaminant level is 30 microg/L. Further research is needed, with particular attention on the impact of uranium on indigenous populations, on routes of exposure in communities near uranium sites, on the combined exposures present at many uranium sites, on human developmental defects, and on health effects at or below established exposure standards.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health and Family Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | |
Collapse
|
15
|
Coryell VH, Stearns DM. Molecular analysis ofhprt mutations generated in Chinese hamster ovary EM9 cells by uranyl acetate, by hydrogen peroxide, and spontaneously. Mol Carcinog 2005; 45:60-72. [PMID: 16299811 DOI: 10.1002/mc.20155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naturally occurring uranium and depleted uranium (DU) are believed to be health hazards by virtue of both their chemical and radiological properties. The mechanism(s) behind uranium's chemotoxic effects has yet to be elucidated. Previous work has shown that DU, as uranyl acetate (UA), was mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase (hprt) locus in XRCC1-deficient CHO EM9 cells. The purpose of the current study was to characterize the mutations induced by UA at the hprt locus of CHO EM9 cells and compare the mutation spectrum of UA with those of hydrogen peroxide and spontaneous mutations in the same line. The hypothesis being tested was that if DU as UA is chemically genotoxic then the mutation spectrum induced by the heavy metal should be distinct from that produced spontaneously or by H2O2. A total of 59 UA-induced, 38 spontaneous, and 45 H2O2-induced mutations were identified. Base substitutions comprised 29%, 42%, and 16% of UA, spontaneous, and H2O2 mutants, respectively. The frequency of G --> T or C --> A substitutions was not significantly different in spontaneous or H2O2-induced mutants than in UA-induced mutants, suggesting a possible role for 8-oxodG damage in UA mutagenesis. However, the observation that UA produced significantly more major genomic rearrangements (multiexon insertions and deletions) than occurred spontaneously suggests the possibility that DNA strand breaks or crosslinks could also be UA-induced mutagenic lesions. The unique mutation spectrum elicited by exposure to UA suggests that UA generates mutations in ways that are different from spontaneous and free radical as well as radiological mechanisms.
Collapse
Affiliation(s)
- Virginia H Coryell
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011-5698, USA
| | | |
Collapse
|
16
|
Trautmannsheimer M, Schindlmeier W, Börner K. Radon concentration measurements and personnel exposure levels in Bavarian water supply facilities. HEALTH PHYSICS 2003; 84:100-110. [PMID: 12498522 DOI: 10.1097/00004032-200301000-00009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
As part of a study covering the whole of Bavaria, the southern most of Germany's 16 states, water supply facilities were examined to determine the radon (222Rn) concentrations in ground water and indoor air and the radon exposure to the staff working in these buildings. Bavaria can be divided into ten geological regions of different geogenic radon potential. From each region, a number of water supply facilities proportional to the size of the region were selected for measurements. Over 500 of a total number of 2,600 water supply facilities were asked to take a 1-L groundwater sample and expose several track-etch detectors in order to obtain the mean room concentration of the main staff work places. In addition, for a period of 2 mo, the personnel had to wear a track-etch detector during the time they spent in the supply facilities. The resulting measurements were then used to estimate their individual effective dose of radon and its progenies. In the East Bavarian crystalline region, the region of the highest geogenic radon potential within Bavaria, indoor radon gas concentrations of up to 400 kBq m(-3) were observed. About 10% of the process controllers in this region are subjected to an annual effective dose of more than 20 mSv. In the other Bavarian regions, only 2% of staff exposure levels exceed this limit. The correlation between the radon concentration measurements of the indoor air, the ground water, and individual personnel exposure levels was determined. The average ratio of the radon indoor air to the processed groundwater concentration is 0.14. But due to the different types of ventilation in the various supply facilities, there can be great variations in this figure. Therefore, there is no clear relationship between the groundwater and the indoor air concentration of a supply facility. This study also reveals no clear relationship between radon indoor air concentrations and the personnel exposure levels of a supply facility.
Collapse
|